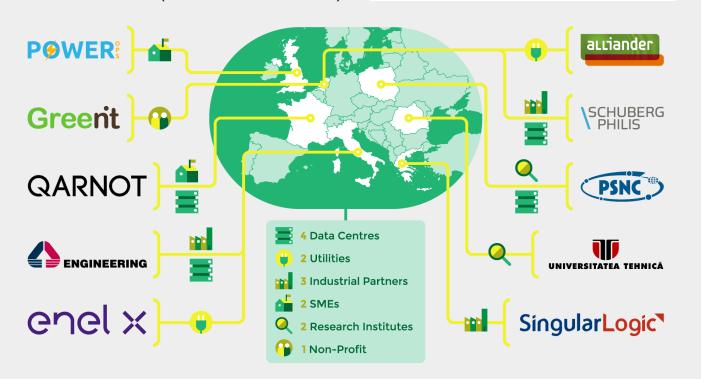


Reliable, economic and efficient smart grid system

CATALYST

ETIP SNET – Regional Workshop Paris 14-15 November 2019



Short presentation of the project

Converting Data Centres (DCs) in Energy Flexibility Ecosystems

Catalyst

H2020-EE-2017-20 Innovation Action October 2017 – October 2020 2.982.805 Euro (EU 2.299.103,5 Euro)

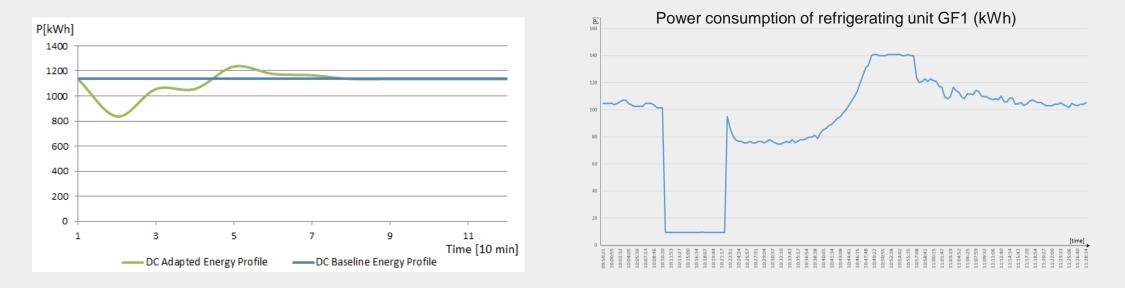
The context:

- 1.5% of global electricity is used in DCs and wasted as heat
- Energy transition, growing demand for balance services providers

The potential:

 DCs has several redundancy systems, (backup generators and cooling systems, batteries, UPS) that could be exploited to enhance the reliability of the grid

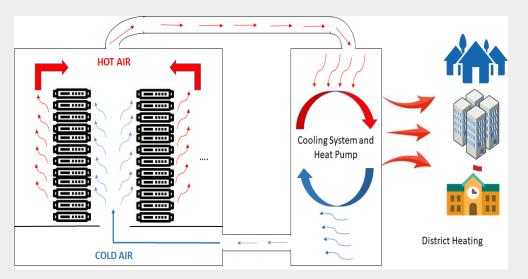
Overarching objectives:

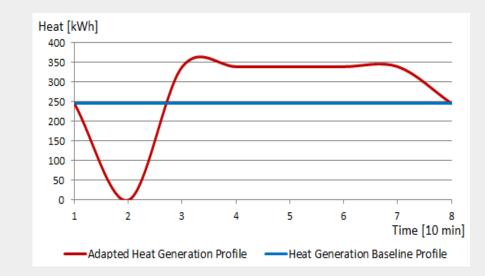

- Demonstrate DCs can and should offer flexibility services to the grid and are suitable hubs coupling the grid with heat network
- Develop a set of tools for DCs assets optimization and flexibility forecasting
- Validate and disseminate an innovative business framework for multi-carrier flexibility service offering

www.project-catalyst.eu

Key exploitable results addressing energy system integration

Evidences from the Italian test: cooling system inertia used as flexibility asset


- Refrigerant units are switched off decreasing the overall energy demand of the DC by 300kW
- When regrigerants are restarted additional power is necessary to bring the system back to steady state


Key exploitable results addressing energy system integration

CATALYST most «ready to the market» tools: prediction engine and optimizer

The **prediction engine** is a modelling tool that can be integrated in the DC management system to quantify how much flexibility or heat can be exploited from the DC while the **optimizer** provides the best strategies configuration (e.g.: hosting external IT load, scheduling IT load in time, etc.) to match the DC's energy consumption with external drivers such as renewable production, heat demand or flexibility request.

Simulation of heat recovery by heat pump

The refrigerant unit switch off generates extra 40 kWh of heat when restarted

Key exploitable results addressing energy system integration

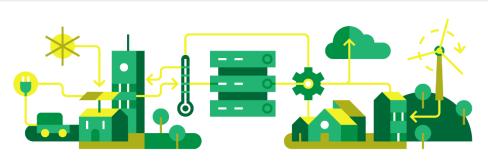
Key results from the projects:

DCs can provide congestion management services (upward/downward) The exploitation of thermal inertia is the least intrusive solution to exploit flexibility At design stage it make sense to locate DCs near the heating network

Quantifiable benefits

improvement of grid reliability, enhancement of the circularity of the DC operation

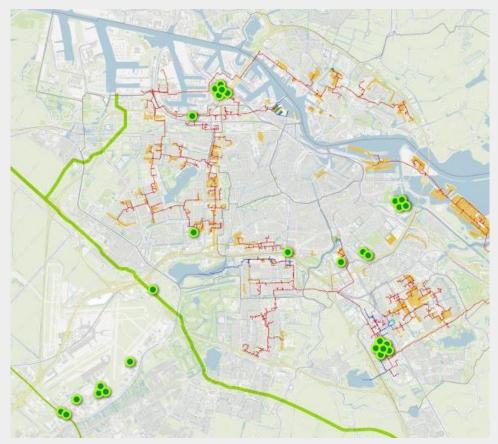
Final beneficiary of the results


DCs, district heating operators, smart grid operators, ESCO, aggregators

Lessons learned and barriers to innovation deployment

Lessons learned from the project and Barriers

- The integration of DCs in the energy market as prosumers is also a matter of education. DC operators should be "educated" in implementing proposed solutions mainly because DCs are designed to operate independently and without integration with external systems.
- Uncertainty on who should invest for district heating connection

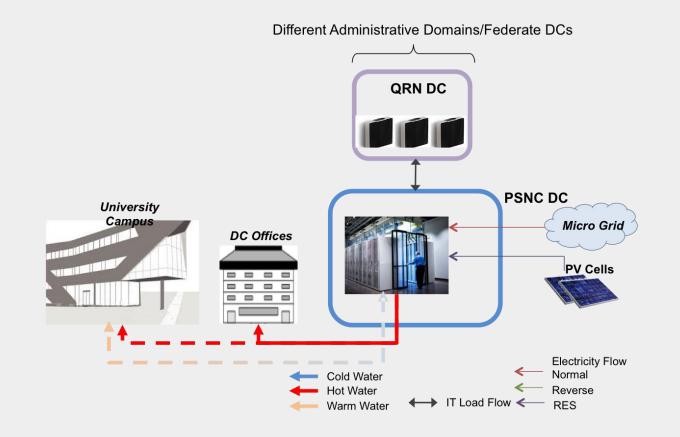


Deployment prospects of the most promising solutions

Market potential

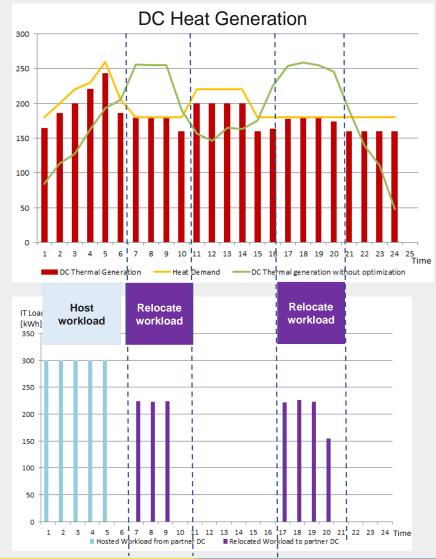
ESCO 2.0 business model

distribution of Data Centres (green dots) near the Amsterdam district heating network (red lines)


Key Partners	Key Activities	Value Pro	positions	Customer Relationships	Customer Segments
CATALYST	Equipment deployment	Flexibilit Perform	•	Periodic reports with results	DC operators
developers	Advisory for	Contract		achieved	
Local Heat Broker	incentives	- Tool for monitoring optimization and control			
Aggregator	application				
	Key Resources	- Possibility to tr	ty to trade	Channels	
	CATALYST control,	flexibility and recovered heat - Possibility to move/accomodate IT load		Participation at trade associations events	
	monitoring and optimization tools			Direct sale	
Cost Structure	Marketing cost	I	Revenue Streams		
Training for DC operators O&M			Profit sharing from flexibility and recovered heat trading		
CATALYST Licensing cost CAPEX for equipment			Profit sharing from energy savings and incentives		

Needs for future R&I activities coming out of the project

Further tests will be performed to quantify pilots' flexibility and validate CATALYST tools


Example: evaluation of the DC flexibility given an external heat demand

Needs for future R&I activities coming out of the project

CATALYST **optimizer** at work:

adapting DC operation to follow external heat demand

- Hosting/relocating IT workload from/to external DC
- Scheduling the delay tolerant workload
- Exploiting thermal flexibility of the cooling system