PLAN. INNOVATE. ENGAGE.

Parallel session 1 - WG1

Sector coupling concepts and framework WG1 white paper in progress

ANTONIO ILICETO WG1 chair

ETIP SNET – Regional Workshop Petten 19-20 September 2019

- > Among other activities, WG1 is elaborating some White Papers, on:
 - ♦ Holisitic architectures \rightarrow published March 2019
 - ✤ TSO-DSO coordination in grid planning \rightarrow expected early 2020
 - Sector Coupling \rightarrow expected by end 2019
- > White Paper intended half way between Tutorial and Position Paper
- > Technologies/processes covered with technical details:
 - Role of storage for sector coupling
 - Power to heating & cooling
 - Power to mobility
 - Power to Gas/Fuels

Leader: Marie Munster , Danish Technical University

Beyond present concept of 'residual load profile'

Beyond present concept of 'residual load profile'

• Evolution of electric system operating philosophy:

THE PAST \rightarrow Load profile given as independent variable, generation has to follow the load

THE PRESENT → Residual load profile (total load minus variable RES generation) covered by flexible generation + pioneering flexibility means

THE FUTURE \rightarrow Dominance of <u>inflexible generation</u> but also of <u>flexible loads</u> plus a wide portfolio of <u>flexibility means</u>

Load follows Generation

Independent variables to be optimised grow exponentially

- Under the overarching objective of facilitating defossilisation/decarbonisation also of other sectors with renewable electricity, the main goal of power system management shall become:
 - Operation: how to best <u>use</u> and <u>combine</u> the many flexibility means available to optimise RES generation having quasi-zero variable cost
 - Planning: optimise development of the grid in coordinated manner with development of many other indipendent actors and sectors: not only generation and load, but also new services and new interfaces

Independent variables to be optimised grow exponentially

- Main goal of power system management shall become:
 - Operation: how to best <u>use</u> and <u>combine</u> the many flexibility means available to optimise RES generation having quasi-zero variable cost
 - Planning: optimise development of the grid in coordinated manner with development of many other indipendent actors and sectors: not only generation and load, but also new services and new interfaces

Internaced				
Grid use	Flexible generation	Flexible loads	Storage within electric system	Storage in other energy systems
 Extended use of grid components Interconnections Exchanges with neighbouring areas 	 Traditional plants' modulation Enhanced ancillary services Improved performances (ramps, response speed, capability range, start- stop sequences, duty cycles) 	 Demand response Interruptible customers Balancing services Aggregators Market & trading mechanisms Smart EV charging 	 Grid batteries Fly wheels CAES/LAES Supercapacitors Pump Hydro 	 Electric vehicles Thermal Thermochemic. Chemicals Gases/Liquids

Focus on interfaces with other utilities and energy systems

Storage within electric	Storage in other energy	Conversion interfaces with other industrial processes
system	systems	
- Batteries	- Electric vehicles —	 Charging/Discharging mobile batteries
 Fly wheels CAES/LAES Supercapacitors/ Supermagnetes Pump Hydro 	- Thermal	 Alternative energy source for heat/steam/freeze production for industrial uses and for buildings
	- Chemicals	- Alternative energy source for desalination and energy industry
		 Endo/Eso-thermic chemical reactions and no-losses energy storage
		Electro-synthesys of Ammonia, Methanol
		- Synthetic fuels no-fossil production
		- Electrolysis

Focus on interfaces with other utilities and energy systems

Storage within electric	Storage in other energy	Conversion interfaces with other industrial processes	Planning and/or operational coordination with other systems
system	systems		
- Batteries	- Electric vehicles —	 Charging/Discharging mobile batteries 	
- Fly wheels	- Thermal	 Alternative energy source for 	
- CAES/LAES		heat/steam/freeze production for industri uses and for buildings	al COOLING
- Supercapacitors/	- Thermochemical —		
Supermagnetes		 Alternative energy source for desalinati and energy industry 	
- Pump Hydro	- Chemicals		
		 Endo/Eso-thermic chemical reactions a no-losses energy storage 	nd - CHEMICAL INDUSTRY
	- Gases/Liquids	8	
		Electro-synthesys of Ammonia, Methan	
		- Synthetic fuels no-fossil production	
		- Electrolysis	 INDUSTRIAL PRODUCT STORAGE MEAN
			ENERGY CARRIER
			- METHANE/LNG GRID

Perimeter of Sector Coupling

	0		1 1. <i>4</i> . <i>6</i>		
Storage within electric system	Storage in other energy systems		sion interfaces with other dustrial processes		Planning and/or operational coordination with other systems
 Batteries Fly wheels CAES/LAES Supercapacitors/ Supermagnetes Pump Hydro Water basins 	 Thermal Thermochemical Chemicals 	 Alternative heat/steam uses and f Alternative and energy Endo/Esc 	/Discharging mobile batteries re energy source for n/freeze production for industri or buildings re energy source for desalinati y industry o-thermic chemical reactions a energy storage	ion →	- TRANSPORT & MOBILITY - DISTRICT & INDUSTRIAL HEATING/ COOLING - DESALINATION & ENERGY
options for feeding inc	COUPLING: additionally,	9 - Electro-s - Synthetic - Electrolys	ynthesys of Ammonia, Methar fuels no-fossil production —		- FUELS INDUSTRY - HYDROGEN AS: • INDUSTRIAL PRODUCT • STORAGE MEAN • ENERGY CARRIER - METHANE/LNG GRID

Storage, Flexibility, Sector Coupling: not synonyms

Typology> Characteristics	Pure load (traditional)	Flexible Load	Storage in electric sytem	Storage in other energy systems	Molecules (chemicals & gases)
Energy Conversion / End Use	End Use	End Use	Conversion	Conversion	Conversion
Energy Flow reversible	NO	NO	YES	YES	YES
Controlled by electricity actors	YES	YES	YES	NO	NO
Providing storage capabilities	NO	NO	YES	YES	YES
Providing flexibility capabilities	NO	YES	YES	YES	YES
Energy carrier capabilities	NO	NO	NO	NO	YES

Energy

carrier

Storage, Flexibility, Sector Coupling: not synonyms

Typology> Characteristics	Pure load (traditional)	Flexible Load	Storage in electric sytem	Storage in other energy systems	Molecules (chemicals & gases)
Energy Conversion / End Use	End Use	End Use	Conversion	Conversion	Conversion
Energy Flow reversible	NO	NO	YES	YES	YES
Controlled by electricity actors	YES	YES	YES	NO	NO
Providing storage capabilities	NO	NO	YES	YES	YES
Providing flexibility capabilities	NO	YES	YES	YES	YES
Energy carrier capabilities	NO	NO	NO	NO	YES
Starage Elevibility Energy					
Storage Flexibilit	y car			POWER – 1	- O - X

Conceptual components of Sector Coupling

- Energy conversion process towards an adjacent industrial sector, where energy can follow different paths:
- stored more easily than within the electric system, for successive re-conversion to electricity: shift in time and in some cases also in space
- consumed, if it is cheaper/cleaner than other energy sources typical of that sector, either temporarily (operational optimisation) or permanently (electrification, which increases the amount of coupling potentials)
- transported, in some cases where transport performances can be higher than transmitting electricity

> Many combinations of the above options \rightarrow sector coupling is a complex multi-variables optimisation problem, with the objective of minimal cost, with given decarbonisation targets & boundary conditions

Conceptual components of Sector Coupling

- Energy conversion process towards an adjacent industrial sector, where energy can follow different paths:
- stored more easily than within the electric system, for successive re-conversion to electricity: shift in time and in some cases also in space
- consumed, if it cheaper/cleaner than other energy sources typical of that sector, either temporarily (operational optimisation) or permanently (electrification, which increases amount of coupling potentials)
- transported, in some cases where transport performances can be higher than transmitting electricity
- ➢ Many combinations of the above options → sector coupling is a complex multi-variables optimisation problem, with the objective of minimal cost, with given decarbonisation targets & boundary conditions

ETIP SNET OF ELECTRICITY CONVERSION PROCESSES - 1

Rationale = End Use YES	TRADITIONAL LOADS - mono- directional conversion - inflexible load profile - Includes CHP when driven only by local heat+power profile	FLEXIBLE LOADS - providing supply/demand balance - providing ancillary services - providing peak shaving - require market mechanisms/price signals to be deployed Demand response, inter customers, smart EV char & adjustable industrial p	ging, CHP	
NO	UNDESIRED EFFECTS - power losses - vRES curtailment		 bidirectional constructional construction devices and prossystem → controc Providing relief to space&time Pump hy CAES/LAES 	RE STORAGE nversion cess within electric olled by electric operators to local congestions in dro, flywheels, , supercapacitors, hary batteries
		NO	YES	Rationale=Storage

R

ETIP SNET OF ELECTRICITY CONVERSION PROCESSES - 2

ETIP SNET OF electricity conversion processes - 3

Classification of system components according to flexibility capablitiy

LEGEND

Conclusions and White Paper aim

- > Important Topic to investigate , being at center of energy system integration
- > Mapping main technologies, their TRL, potentials and barriers
- > Deployment prospects and impact of the most promising solutions
- Needs for future R&I activities and especially of demo/pilot projects at limited footprint but full scale
- Involvement of other sectors' operators and decision makers (market actors, regulators, local utilities, specific industries