

Microgrid Services for Local Energy Communities How to integrate a microgrid in a real estate development

wim.cardinaels@vito.be

Agenda

- The project overarching objectives, the consortium
- Project Key exploitable results
- The main lessons learned and barriers
- Needs for future R&I activities
- Deployment prospects of the most promising solutions
- Identify needs for further testing
- Information about the use/need of an inter-regional cooperation

Project Ambition

flox 50 feasibility study

Product: energy gateway + cloud based cluster control

gateway, smart components, PV, battery, ...

software (gateway) and platform as a service

• Market: new urban districts

renovation and development Mechelen site

• Financial aspects

Energy

loan, operational lease, insurance

supporting cooperation's of joint owners (flats)

Research, trends, workshops

Focus: Mechelen site

Tendering real estate development

- No gas => district heating based on ATES and heat pumps
- 800 dwellings
- 4700m² retail and catering
- 6600m² offices
- 600 parking spaces
- Maximize PV
- Mobility hub (EV sharing, charging)

Agenda

- The project overarching objectives, the consortium
- Project Key exploitable results
- The main lessons learned and barriers
- Needs for future R&I activities
- Deployment prospects of the most promising solutions
- Identify needs for further testing
- Information about the use/need of an inter-regional cooperation

Business Model Canvas

- Customers (timing!)
- Key partners
- Relations
- Costs
- Revenues

• • • •

CAPEX <> OPEX

Microgrid Service Provider for Local Energy Communities Scope

- Maximize local renewable production and consumption
- Optimize design and dimensioning through bundling of scattered capabilities
- Flexibility is valorized
- Optimized procurement
- Purchase power through scale
- Circularity by design

Operational car lease

- = service package
- Fixed fee for contracted km + time
- Includes taxes
- Insurance
- Maintenance
- Tires
- Resale

Microgrid Service Provider for Local Energy Communities OPEX

- Monthly costs reduced by economies of scale:
 - Investments (PV, batteries, charging stations, ...)
 - Grid fee, energy purchases
 - Financing, services
- Monthly income:
 - Invoicing energy towards occupants and EV charging
 - Selling surplus PV
 - Selling flexibility to BRP, aggregator
 - Participating in reserve markets

€ ### ###.##

€ ### ###.##

Microgrid Service Provider for Local Energy Communities

OPEX <u>+ services</u>

- Service package should offer additional services and savings
 - Increase attractiveness
 - Make total package profitable
- Add-ons

Enera

- Coaching
- Smart Grid Ready house hold appliances (limited brands and types, saves on integration + full warranty)
- Different comfort levels: vary capacity in time
- Mobility vouchers
- Economies of scale (same services for multiple LECs)

Agenda

- The project overarching objectives, the consortium
- Project Key exploitable results
- The main lessons learned and barriers
- Needs for future R&I activities
- Deployment prospects of the most promising solutions
- Identify needs for further testing
- Information about the use/need of an inter-regional cooperation

Interactions

- Real Estate Developer
- Owner / Occupant
- DSO

Real Estate Developer

Temporary involved

Profit = Value

What occupants want

 Individual gas boiler, control, risk and cost responsible

Limit Liability

Hand over management to syndic

Total Cost of Ownership

- Costs Additional CAPEX

 Shared district heating, PV, battery => performance risk
High Complexity

24h/7d support and optimization

Owner / Occupant

- Future Proof (owner)
- Total Cost of Ownership: service package offering comfort and sustainability for a price not more than usual
 - = Cost price dwelling (Owner)
 - = Monthly invoice (Occupant)
- Additional complexity managed via service package (coaching, warranty, interventions, ...)

Occupant: Invoice Not More than Usual

Current tariff structure

• Current Flemish energy invoice based on <u>kWh</u> includes:

CONSUMER

- Commodity energy 25-30%
- Grid fee
- Levies
- No Certificates

PROSUMER (<10kW)

net metering on yearly basis prosumer tariff (~28% discount) discount via net metering no GEC for new installations

PROSUMER (>10kW)

real time use is free normal grid tariff + injection fee discount for real time use GEC 10 years offering 5% return (if >55% real time use)

• Can Local Energy Communities become a new client segment for DSO's, having a tariff structure that reflects their local energy use?

Financing the energy transition: grid tariff + levies

Reflection on grid tariffs and levies for Local Energy Communities

- Local grid in community: members + opt outs
- Connection between local grid and macrogrid
- Virtual Metering
- Possible components for grid fee LECs:
 - LEC-fee: fix tariff that reflects cost of LEC-grid
 - stimulate: sharing local energy, manage peak loads => capacity based
 - LEC as client of the distribution grid
 - Peak load => grid
 - Energy exchange => markets and levies

Distribution System Operator

- Free choice of energy supplier should be secured (Opt Out LEC)
- Minimize CAPEX, avoid parallel grid and metering
- Provider is mainly interested in management and settlement

Distribution System Operator

- Free choice of energy supplier should be secured (Opt Out LEC)
- Minimize CAPEX, avoid parallel grid and metering
- Provider is mainly interested in management and settlement
- Monitoring
 - EAN-meter via P1/S1
 - Submetering (ABB) for controls
 - Validated EAN-data for settlements

	$\wedge \wedge$				
	network Installation	monitoring	management	settlement	Link to the Regulated market
		<u> </u>			
Scenario 1	Regulated task	Regulated task	Regulated task	Regulated task	Allocation of clients in groups - Sharing of Energy
Scenario 2	Regulated task	Regulated task	Regulated task	Non Regulated Task	One EAN for one group
Scenario 3	Regulated task	Regulated task	Non Regulated Task	Non Regulated Task	Public network in function of private use inclusive public meters
Scenario 4	Regulated task	Non Regulated Task	Non Regulated Task	Non Regulated Task	Public network in function of private use exclusive public meters
Scenario 5	Non Regulated Task	Non Regulated Task	Non Regulated Task	Non Regulated Task	Privately owned network

Lessons Learned

- Relationship with end user in order to get control on heating, charging and smart appliances in order to get control on flexibility
- LEC as new customer segment for DSO

Agenda

- The project overarching objectives, the consortium
- Project Key exploitable results
- The main lessons learned and barriers
- Needs for future R&I activities
- Deployment prospects of the most promising solutions
- Identify needs for further testing
- Information about the use/need of an inter-regional cooperation

ROLECs

Needs for further Research and Innovation

- Modelling LECs
 - Key Performance Indicators
 - Legal Aspects: roles, GDPR, ...
 - Dimensioning
 - Optimization Total Cost of Ownership
 - Impact on Energy System
- Tariff structures
- End User Involvement and Behavior

ROLECs

Roll out of Local Energy Communities

- Flux50 cooperation project
 - 5 research
 - 1 DSO
 - 4 legal
 - 5 engineering
 - 5 controls, components, IoT
 - 4 ESCO
 - 5 operational services

- Submitted
- Approval 2018-12 ?
- Execution 2019-01 => 2020-12
- Budget 10M€
- 10 pilot sites:
 - Residential + Industry
 - Existing sites + site development

Publication

CIRED Workshop - Ljubljana, 7-8 June 2018 Paper 0400

ORGANISATION OF THE COMMERCIAL AND PUBLIC SERVICES FOR THE INSTALLATION OF LOCAL AND RENEWABLE ENERGY COMMUNITIES (LEC/REC)

Ruth VAN CAENEGEM Eandis – Belgium ruth.vancaenegem@eandis.be Wim CARDINAELS EnergyVille – Belgium wim.cardinaels@energyville.be Frederik LOECKX Flux50 – Belgium frederik.loeckx@flux50.com

Freddy VAN BOGGET KBC-Belgium freddy.vanbogget@kbc.be

https://flux50.com/media/1883/Paper%20presented%20at%20the%20CIRED%20Workshop%202018%20by%20Ruth %20van%20Caenegem%20(Eandis).pdf

Questions?

wim.cardinaels@vito.be

P