The FlexNett Project

2015 – 2018

Bernt A. Bremdal, Smart Innovation Norway Hanne Sæle, SINTEF Energi Merkebu Zenede Degefa, SINTEF Energi Geir Mathiesen, SINTEF Digital

The FlexNett project has received funding from the *Norwegian Research Council* under the ENERGIX program

Background

- Surge in PV investments and EVs
- Increased interest in batteries
- Smart Grid maturity
- Infrastructure upgrades or energy flexibility?

Trends in Peak Power and kWh Energy Growth

- The yearly consumption and the peak hour consumption is growing at different rate.
- Each year the percentage change of yearly consumption from 2007 value is increasing by 1.85% and increasing by 2.89% for peak-hour.
- In 2015 compared to 2007, the yearly consumption has increase by 14.38% and by 24.57% for peak hour of the year

Source: Merkebu Zenebe Degefa

Consumption on specific dates are inflexible

Batteries – market perspectives

Cost of Li-ion battery packs in battery electric vehicles

"Rapidly Falling Costs of Battery Packs for Electric Vehicles," Nature Climate Change, 2015

2016: €420 per kWh 2020: €170 per kWh

Project Objectives

- 1. Cater for flexibility in the future smart grid
- 2. Demonstrate and verify technical and market oriented solutions for flexibility at different grid levels and for the benefit of different stakeholders
 - a. Consumer flexibility
 - b. Prosumer flexibility
 - c. Storage
 - d. Consolidated flexibility for single and collection of end-users
 - e. Real-time monitoring and control through SCADA, DMS and AMS
- 3. Contribute to efficient handling of ICT-security
- 4. Honor end-user privacy

The R&D consortium

- 6 DSOs
- 1 TSO
- 10 Suppliers
- 1 Municipality
- 1 Grid association
- 2 research companies
- 1 consultant
- Project owner: BKK, Bergen
- Project management: SINTEF Energi
- Co-funding: Norwegian Research Council
- Budget: App. €2,5 mill

Overall project approach

Pilots in: Bergen Area (West Coast) Nord-Trøndelag (North) Hvaler (South) Workshops: For general engagement Focus and priorities Knowledge sharing

Key questions: Focus on prosumers and storage

- How can PV-based prosumers contribute to reduced loads in the grid during peak periods?
- How can street batteries work as a local flexibility resource?
- What is the flexibility potential for a prosumer?
- What will be the consequences of a prosumer in a weak radial?
- How does energy flow during the day and year vary and how to manage big power peak changes?

Also.....

- What effect will alternative storage facilities have (placement and ownership)?
- What are the required functions for future sub-stations to support more flexible grid opertions?
- How to manage information security when different systems are connected (AMS/RTU/DMS/...)?
- How to detect and respond to security threats?

Prosumers in the northern hemisphere

Recorded generation of electricity higher than estimates based on satellite measurements

Angle of inclination becomes increasingly important

FL-=Xnett

Orientation with respect to consumption important

South East _Sydvendt (egentlig SSE)

W versus SSE orientation Oct. 14

Case 1: The flexible prosumer

FL-=Xnett

Boiler as a buffer to increase yield

FL-=Xnett

Case 2: Prosumers exposed to power tariffs

Important with orientation that increases self-consumption

Degrees	PV panel capacity [kWp]	Annual yield [kWh]	Energy part of tariff (€)	Power part of tariff (€)	Sum variable tariff {€)
182	3,1	3320	287,1	355	622,2
106	3,1	2759	290,5	312	602,2

Power oriented tariff compared to energy tariff

• From the demo area – tariff with energy and fixed part only

Type of customer	Fixed fee	per kWh (summer)	per kWh (winter)	Power cost kW/month
Residences	€214	¢3,9	¢4,1	0

• From the demo area – tariff that includes a power part

Type of customer	Fixed fee	per kWh (summe	er) per kWh (wi	nter) Power cost k	w/month*)
Residences	€62,5	¢2,6	¢2,8	26,03	€6,2

*) The power tariff is calculated as the average kW of the three highest peaks during a month. 1kW peak average a month implies a cost of €74,4 per year

How to control the power tariff?

- The three highest peak readings from the smart meter of a resident during a month is saved at all times
- These peaks are made transparent to the residence owner
- These records are removed each month
- Forecasts based on historic records are made continuously
- Residence owner will receive warnings (push) or choose to invoke decoupling of certain loads at a certain ceiling by a Smart Energy Service Provider (SESP)
- The ceiling will be based on historic consumption patterns (machine learning) for the household and preferences defined by the household itself.

Case 3: Benefits of batteries

Storage Optimization

FL-EXnett

Prosum er level storage (c.g 6.4kWh/3.3kW) Utility level storage (e.g 250kWh/1MW)

Distributed household level battery storage system could defer network investment needs at MV/LV substation by 3 years compared to the year investment would have been needed if no optimal PVbattery system utilization is implemented.

Business models & investments

- A battery could typically create a local ecosystem/local market
- We foresee a breakthrough for batteries in 2020-2021
- Investment in battery capacity to cut 0,5 kW 1,2 kW under current power tariff regime is already cost effective
 - Reward is amplified for apartments with district heating and "passive houses" with low electric base load for heating
- The availability of EVs opens up significant possibilities for V2G
 - Batteries with wheels
 - Issue with availability during peak hours, must be investigated

Figure 6: Storage needs along the value chain. Source: Berger, 2017

21

Street batteries – attractive to end-users

Faster charging improves the business case for batteries

"All" of capacity applied to cut peak

The case for EV car pools

Enhet	Kapasitet	Pris	NOK/kWH
Tesla 75 D	75 kWh	622 700	8 302
Tesla 100 D	100 kWh	795 650	7 956
Tesla P100D	100 kWh	1 105 150	11 015
Nissan Leaf	40 kWh	290 850	7 271
VW eGolf	35,8kWh	310 900	8 684
Tesla Power wall	14 kWh	57 000	4 071
Opel Ampera-E	60 kWh	359 900	5 998

(Kilde: Håkon Duus, Smart Innovation Norway)

"Battery on wheels" and V2G suggests an interesting investment alternative to stationary batteries considering the value of transportation in addition to energy storage.

Behavior of neighborhoods with PVs

FL-=Xnett

Summing up

- PV-orientation is important for the prosumer and the grid owner
 - Important to orient PV panels in accordance with consumption profile
 - Power tariffs amplify this need
 - Creates a win-win for prosumer and grid owner the latter must be proactive
- Despite much higher consumption than production surplus is still fed into the grid during the day, sometimes in significant, short bursts
 - Use of local energy storage could buffer momentarily production surplus and by that prevent feeding energy into the grid
 - Batteries help to
 - Still a cost issue
 - Generally cost beneficial from 2020
 - 0,5 1kW power peak cuts/battery capacity today could be cost efficient today
- Because the consumption always is higher than the production on a daily basis, the storage does not need (for this purpose) to be larger than daily quantity of energy fed into the grid.
- Distributed household batteries (behind the meter) could defer investments in LV/MV grid by 3 years
 - Batteries placed closed to the end-user increases business options
 - Stacking of services on top of battery
- As the consumption is essentially for heating thermal storage is cheap and useful
 - Currently more attractive than batteries
 - V2G is an attractive option but not perfectly compatible with household consumption profiles

