

VaGe – Improving the value of variable and uncertain power generation in energy systems

ETIP SNET workshop 7-8.12.2017 Juha Kiviluoma

VaGe – Academy of Finland funded project Consortium:

VTT Technical Research Centre of Finland

FMI (Finnish Meteorological Institute)

VaGe project structure

WP1: Improving forecasts and capturing correlations

- Short term (36 hours)
- Medium term (two weeks)
- Conversion to energy

WP2: Development of multi-scale energy system optimisation methods: Backbone

- Planning and operations
- Highly adaptable temporal presentation

WP3: Improving the value of wind power and PV in energy systems

Impact of:

- Better forecasts
- Better use of forecasts
 - Proactive consumers
- Flexible biomass

Result #1: Backbone – an adaptable model for energy systems and energy resources

- Lesser GNU license (open source)
- The core model offers <u>energy conversions and</u> <u>energy transfers</u> that are applicable to any conceivable energy transformation
 - Minimize equations to keep the code tractable
- Input data drives what forms of energy are actually modelled and how conversions and transfers are represented
- Allows <u>stochastics</u> for short-term forecasts and for long-term statistics (e.g. reservoir hydro power)
- New models are defined through <u>model definition files</u>: allows to build new implementations on top of the core engine as needed
- Different models can directly <u>re-use</u> each others results (e.g. investments and operations)
- PhD students in the University College Dublin and in the Economic and Social Research Institute in Dublin have started using Backbone

Result #2: Forecast horizon value

- 2 node system
- 30 different kinds of units
- 113 units (integer online variable)
- District heating
- High fuel costs
- Peak: 11.6 GW
- Electricity storages:
 - 1950 MW and 900 MW
 - 48 hours and 24 hours
 - 90% round trip eff.
 - O&M cost: 3 €/MWh

Total power system costs when using different stochastic forecast horizons

Result #3: RealValue

- Results from another project that now uses Backbone: H2020 RealValue
- Costs and benefits of smart thermal mass heaters (replacements for radiators)
- Results by Topi Rasku
- Preliminary

2030, Total System Costs (Finland & Sweden)

Scenario	Total Cost [M€]	Savings Per Unit [€]	Cost Reduction [%]
Baseline	2,327	-	0.00
Battery	2,311	-	0.70
EV:s	2,324	23.93	0.12
V2G	2,323	32.76	0.17
Smart radiator	2,318	23.89	0.41
Smart mass heater	2,304	55.71	0.97

- EV results display excess charging...
 - Need to fix this...

RealValue lessons learned so far:

- With imperfect information, committing distributed heating resources to the reserves ahead of time is challenging.
 - Risk to negatively impact thermal comfort due to forecast errors.
 - Risk is smaller for SETS than for direct electric heating, since the storage helps decouple the internal temperature from the heating system power draw.

Next steps

- Keep improving Backbone
- Support Backbone users
- Open the tools for wider group of users
- Produce results that utilize the strengths of the model and the new stochastic forecasts
 - Find ways to improve the value of wind power and PV
 - Role of flexible consumers
 - Strategic use of biomass
 - More suitable market structures/regulations
- Try some further tricks in modelling

Prospects

- Needs for future R&I activities coming out of the project
 - Improvement of 3-10 day weather forecasts (resolution and accuracy, calibration for energy purposes)
 - Finding best solutions for heat storage in buildings
 - Modelling methodologies and ideas are currently being implemented in new EU project Spine

- Deployment prospects of the most promising solutions
 - Using stochastic forecasts in the optimization of timeof-use constrained resources
 - ...just starting

TECHNOLOGY FOR BUSINESS

 $\sqrt{2}$

<u>.</u>

