NSCG workshop – Clean Energy Week

PLAN. INNOVATE. ENGAGE.

ETIP SNET WG4 Digital Energy POV

Elena Boskov Kovacs

ETIP SNET WG4 Digital Energy – Task Force 2 leader - Disruptive Use Cases and New Markets

Managing Partner, Blueprint Energy Solutions

elena@blueprintenergy.at

@etipsnet

dm

info@etip-snet.eu

linkedin.com/groups/8208338

ETIP SNET's organisation

ETIP SNET Stakeholders

WG4 Digital Energy Stakeholders

- Consumers
- > DSO/TSO
- Equipment suppliers
- ICT Technology providers
- Telecom operators
- Renewable Energy Sources providers
- Research and Academia
- > Others

ETIP SNET MALE ETIP SNET WG4 : Members of the TF1

Task Force 1

Digital **Technologies** (enablers)

D1: Name	D2: Surname	D3: Email address	D4: Stakeholder group
Rolf	Apel	rolf.apel@siemens.com	Equipment supplier (NON ICT)
Liam	Beard	liam.beard@vodafone.com	Telecom service providers
Theo	Borst	theo.borst@dnvgl.com	ICT technology provider
Elena	Boskov-Kovacs	elena@blueprintenergy.at	ICT technology provider
Miguel	Carvalho	mcarvalho@watt-is.com	ICT technology provider
Norela	Constantinescu	norela.constantinescu@entsoe.eu	Transmission system operator
john	dalton	john.dalton@dit.ie	ICT technology provider
philippe	DESBATS	philippe.desbats@cea.fr	
Aris	Dimeas	adimeas@power.ece.ntua.gr	Research and academia
Jesus	Fraile-Ardanuy	jesus.fraile.ardanuy@upm.es	Research and academia
Guillaume	GIRAUD	Guillaume-np.giraud@rte-france.com	Transmission system operator
HENGXU	HA	hengxu.ha@gmail.com	Equipment supplier (NON ICT)
Ludwig	Karg	L.Karg@baumgroup.de	Research and academia
Georges	Kariniotakis	georges.kariniotakis@mines-paristech.fr	Research and academia
Henric	Larsson		Distribution System Operator
Yannis	Mantzaris	I.mantzaris@deddie.gr	Distribution System Operator
Antonello	Monti	amonti@eonerc.rwth-aachen.de	Research and academia
Antonio	Moreno-Munoz	amoreno@uco.es	Research and academia
Daniel	Mugnier	daniel.mugnier@tecsol.fr	ICT technology provider
SANTIAGO	OTERO PEÑA	santiagojose.otero@enel.com	Distribution System Operator
Sandra	Riaño	sandra.riano@tecnalia.com	Research and academia
Moamar	SAYED MOUCHAWEH	moamar.sayed-mouchaweh@mines-douai.fr	Research and academia
Bruno Miguel	Soares	brunomiguel.soares@rdnester.com	Research and academia
Eric	Suignard	eric.suignard@edf.fr	Research and academia
JChristian	Toebermann	christian.toebermann@iwes.fraunhofer.de	Research and academia
Manolis	Vavalis	m.vavalis@gmail.com	Research and academia
Arjan	Wargers	arjan.wargers@elaad.nl	Distribution System Operator
Malcolm	Yadack	malcolm.yadack@swtue.de	Distribution System Operator

ETIP SNET WG4 : Members of the TF2

Task Force 2

Digital Use Cases (services)

AGE.	D1: Name	D2: Surname	D3: Email address	D4: Stakeholder group
	Peter	Fröhlich	peter.froehlich@ait.ac.at	Research and academia
	Aimee	Betts-Charalambous	aimee.betts-charalambous@techuk.org	ICT technology provider
	Yvonne	Boerakker	yvonne@tki-urbanenergy.nl	
	Elena	Boskov-Kovacs	elena@blueprintenergy.at	ICT technology provider
	Miguel	Carvalho	mcarvalho@watt-is.com	ICT technology provider
	Norela	Constantinescu	norela.constantinescu@entsoe.eu	Transmission system operator
	philippe	DESBATS	philippe.desbats@cea.fr	
	Aris	Dimeas	adimeas@power.ece.ntua.gr	Research and academia
	Jesus	Fraile-Ardanuy	jesus.fraile.ardanuy@upm.es	Research and academia
	Peter	Fröhlich	peter.froehlich@ait.ac.at	Research and academia
	Guillaume	GIRAUD	Guillaume-np.giraud@rte-france.com	Transmission system operator
	HENGXU	HA	hengxu.ha@gmail.com	Equipment supplier (NON ICT)
	Esther	Hardi	ESTHER.HARDI@ALLIANDER.COM	
	Risto	Kosonen	risto.kosonen@aalto.fi	Research and academia
	Henric	Larsson	Henric.larsson@vattenfall.com	Distribution System Operator
	Christian	Lechner	Christian.Lechner@EVN.at	Renewable energy sources
	Yannis	Mantzaris	I.mantzaris@deddie.gr	Distribution System Operator
	ASIER	MOLTÓ	asier.molto@ree.es	Transmission system operator
	Ana Carina	Morais	anacarina.morais@edp.pt	Distribution System Operator
	Daniel	Mugnier	daniel.mugnier@tecsol.fr	ICT technology provider
	SANTIAGO	OTERO PEÑA	santiagojose.otero@enel.com	Distribution System Operator
	Jan	Pedersen	jan.pedersen@ae.no	Distribution System Operator
	JAN	PEDERSEN	jan.pedersen@ae.no	Distribution System Operator
	Sandra	Riaño	sandra.riano@tecnalia.com	Research and academia
	Liliana	Ribeiro	liliana.ribeiro.pt@ieee.org	Distribution System Operator
	Rémy	Rousset	remy.rousset@wivaldy.com	ICT technology provider
	Arshad	Saleem	arshad.saleem@innoenergy.com	Research and academia
	Moamar	SAYED MOUCHAWEH	moamar.sayed-mouchaweh@mines-douai.fr	Research and academia
	Marco-Robert	Schulz	marco-robert.schulz@siemens.com	Equipment supplier (NON ICT)
	Pierre	Serkine	Pierre.serkine@innoenergy.com	Research and academia
	Pieter	Vingerhoets	pieter.vingerhoets@energyville.be	Research and academia
	Malcolm	Yadack	malcolm.yadack@swtue.de	Distribution System Operator

ETIP SNET THE ETIP SNET WG4 : Members of the TF3

Task	Force	3
------	-------	---

Digital **Cyber Security** (Robust)

D1: Name	D2: Surname	D3: Email address	D4: Stakeholder group
Rolf	Apel	rolf.apel@siemens.com	Equipment supplier (NON ICT)
philippe	DESBATS	philippe.desbats@cea.fr	
Marcus	Meisel	marcus.meisel@tuwien.ac.at	Research and academia
Jean-François	MONTAGNE	jeff.montagne@enedis.fr	Distribution System Operator
Antonello	Monti	amonti@eonerc.rwth-aachen.de	Research and academia
Liliana	Ribeiro	liliana.ribeiro.pt@ieee.org	Distribution System Operator
Moamar	SAYED MOUCHAWEH	moamar.sayed-mouchaweh@mines-douai.fr	Research and academia
Bruno Miguel	Soares	brunomiguel.soares@rdnester.com	Research and academia
Manolis	Vavalis	m.vavalis@gmail.com	Research and academia
Arjan	Wargers	arjan.wargers@elaad.nl	Distribution System Operator

DIGITALIZATION OF THE ELECTRICITY SYSTEM AND CUSTOMER PARTICIPATION Technical Position Paper WG4 COMPLETED

Contents

SUMMARY	8
1. DIGITALIZATION OF THE ENERGY 3Y STEM - TECHNOLOGY (TF1)	11
1.1 EXECUTIVE SUMMARY.	
1.2 PREMISES	13
1.3 DIGITALIZATION OF THE ENERGY SYSTEM	13
1.4 ENABLING DIGITALIZATION – RELEVANT TECHNOLOGIES AND STANDARDS	17
1.4.1 DC GRIDS	17
1.4.2 SMART TRANSFORMERS	18
1.4.3 SECTOR COUPLING	18
1.5 TECHNOLOGIES AT THE INFRASTRUCTURE LAYER	20
1.5.1 MODERN COMMUNICATION NETWORKS	20
1.5.2 POWER GRID OPERATION	
1.5.3 DIGITAL TWINS	
1.6 TECHNOLOGIES AT THE BUSINESS LAYER	
1.6.1 VISUALIZATION TOOLS	44
1.6.2 FLEXIBILITY AGGREGATION PLATFORMS	
1.6.3 DATA ANALYTICS AS A SERVICE (SAAS)	47
1.7 STANDARDS IN SUPPORT OF DIGITALIZATION	
1.8 ENABLING DIGITALIZATION – TRENDS	
1.8.1 ADAPTIVE & HOLISTIC EVOLVEMENT	
1.8.2 USER CENTERED EXPERIENCE	
1.8.3 FUTURE ROLE OF AGGREGATION PLATFORMS	53
1.8.4 DISRUPTIVE ENABLING TECHNOLOGIES	54
1.9 ENABLING DIGITALIZATION - RECOMMENDATIONS	
1.9.1 PHYSICAL LAYER	
1.9.2 INFRASTRUCTURE LAYER	
1.9.3 BUSINESS LAYER	
2. DIGITAL ENERGY DI 8RUPTIVE U 8E CA 8E 8 AND NEW MARKET 8. BU 8INE 8 8 MODEL 8 AND CU 8	TOMER
PARTICIPATION (TF2)	
2.1 EXECUTIVE SUMMARY	
2.2 INTRODUCTION	
2.3 IMPORTANT QUESTIONS TO ANSWER	
2.4 EXPECTED IMPACT OF ETIP SNET AND WORKING GROUP 4 TASKFORCE 2	
2.5 BOLES AND DEFINITION	63
2.6 STATE OF THE ART	
2.7 USE CASES - MAIN OUTCOME	
2.8 INFRASTRUCTURE LAYER	
2.8.1 MONITORING, VISUALISATION, AND ANALYTICS FOR EVERY STAKEHOLDER GROUP	
2.8.2 USE CASES BETWEEN DSC AND TSC	
2.8.3 EBAY FOR ENERGY - ENSQUARE: A TRANSPARENT, ACCESSIBLE MARKET FOR LA	BELED
ENERGY	
2.8.4 LOCAL ENERGY COMMUNITY	
2.9 PHYSICAL LAYER	
2.9.1 DELIVER FLEXIBILITY TO THE MARKET	
2.9.2 TRANSPARENT FLEXIBILITY MARKET WITH LV MONITORING - AGDER ENERGI	80
2.9.3 PREVENTIVE MAINTENANCE – SMART METERING USE CASE	82
2.9.4 EV / MOBILITY USE CASE	
2.10 BUSINESS LAYER	
2.10.1 INCREASING PHOTOVOLTAIC SELF CONSUMPTION WITH DIGITALIZATION	USING
BLOCKCHAIN	
OVERVIEW	
2.10.2 JOULIETTE - BLOCKCHAIN-BASED ENERGY TOKEN	
2.10.3 CONSUMER EMPOWERMENT, CUSTOMER RELATIONSHIP AND BEHAVIOURAL CHAN	GE 88
2.10.4 DEMOCRACY BY DESIGN	
2.10.5 DIGITAL TWIN	
2.11 EMERGING TRENDS	
2.12 RECOMMENDATIONS	
2.13 FURTHER RECOMMENDATIONS	
2.13.1 CONGESTION MANAGEMENT	
2.13.2 BALANCING:	
2.13.3 FLEXIBILITY	
2.13.4 COORDINATION OF FLEXIBILITY OPTIONS:	
2.13.5 REAL-TIME CONTROL AND SUPERVISION:	100

\square		
	34 EVENITVE CIRMARY 101	
	a 1 EACAD IVE COMMANT	
	2.2 1 RECOUNTLY OF DEROEGORIT AND RESILENCE	
	3.2.1 BAGHARUUND 104	
	3.2.2 DIFFERENTIATION TO PARALLEL ACTIVITIES 105	
	3.2.3 INCREASING CYBERATTACKS 106	
	3.3 MOTIVATION FOR FURTHER CYBERSECURITY RESEARCH	
	3.3.1 EXAMPLE EXCERPT OF EUROPEAN CYBERSECURITY PROJECTS	
	3.3.2 OPERATIONAL TECHNOLOGY CYBERSECURITY VS. INFORMATION TECHNOLOGY	
	CYBERSECURITY112	
	3.3.3 CYBERATTACKS IN INDUSTRIAL CONTROL SYSTEMS	
	3.3.4 RISK ASSESSMENT	
	3.3.5 IDENTIFYING CLUSTERS, TOPICS, AND SCENARIOS	
	3.4 FUTURE CYBERSECURITY AND RESILIENCE CHALLENGES	
	3.4.1 CLUSTER: TECHNOLOGY	
	3.4.2 CLUSTER: POLICY	
	3.4.3 CLUSTER: FUTURE	
	3.5 CONCLUSION	
	3.5.1 CYBERSECURITY RESEARCH TOPICS RECOMMENDATIONS	
	3.6 OUTLOOK – ETIP SNET – IMPLEMENTATION PLANS	
4	DIRECTORIE 8	
	4.1 REFERENCES	
	4.2 ABBREVIATIONS 158	
	4.3 APPENDIX CYBERSECURITY 160	
	4.3.1 RECOMMENDATIONS AND GUIDELINES 160	
	4.3.2 CONTACTS AND ORGANIZATIONS 161	
	4.3.3 RELEVANT STANDARDS 162	
	4.3.4 CYBER-ATTACKS REPORTS LIST. 164	
	4.3.5 FURTHER READING 165	
5	ABOUT THE AUTHOR 3 193	

INDEX OF IMAGES, TABLES AND FIGURES

TABLE 1: RELEASES OF THE 3GPP. TABLE 2: CHARACTERISTICS OF COMMUNICATION TECHNOLOGIES. TABLE 3: STATUS OF COMMUNICATION TECHNOLOGIES.	. 22
TABLE 3: STATUS OF CONNIONCATION TECHNIQUES (WITHIN 200KHZ CHANNEL)	. 24
TABLE 5: LATEST WIFI STANDARDS	. 25
TABLE 6: LATEST BLUETOOTH STANDARDS	. 26
TABLE 7: LATEST BROADBAND PLC STANDARDS	. 27
TABLE 8: LATEST NARROWBAND (NB) PLC STANDARDS	. 29
TABLE 9: ITU-T ACTIVE STANDARDS	. 30
TABLE 10: SONET/SDH DESIGNATIONS AND BANDWIDTHS	. 30
TABLE 11: EXAMPLE OF SDH/SONET STANDARDS STATUS	. 31
TABLE 12: WDM STANDARDS STATUS	. 31
TABLE 13: OTN STANDARDS STATUS	. 32
TABLE 14: OPTICAL ETHERNET STANDARDS (ACTIVE)	. 33
TABLE 15: OPTICAL ETHERNET STANDARDS (DEVELOPMENT)	. 33
TABLE 16: EFFECTIVE TERMINAL ACCESS CAPACITY AT PRESENT	. 35
TABLE 17: EXAMPLES SATELLITE STANDARDS	. 36
TABLE 18: OVERVIEW OF USE CASES PRESENTED IN THIS POSITION PAPER	. 65
TABLE 19: BENEFITS AND ATTENTION POINTS OF SMARTNET TSO-DSO COORDINATION (SOURCE: [24]) . 71
TABLE 20: SELECTED EUROPEAN RESEARCH PROJECTS AND THEIR TIMING	108
TABLE 21: COMPARISON BETWEEN IT AND OT (SOURCE: T&D EUROPE)	112
TABLE 22: CORRELATION OF IMPACT LEVELS AND MEASUREMENT CRITERIA IN AN ANALY SCENARIO	'818 113

FIGURE 1: THE MODIFIED NIST MODEL

14

ETIP SNET WG4 Task Force 1 : Highlights

Digital **Technologies** (enablers)

Digitalization of the energy system

Enabling Digitalization - Relevant Technologies & Standards

- Technologies at the Physical Layer
- Power grid operation
- Technologies at the Business Layer

Standards in support of Digitalization

Enabling Digitalization – Trends Adaptive & Holistic Evolvement User centered Experience Future role of aggregation platforms Disruptive Enabling Technologies

ETIP SNET WWW WG4 Task Force 1 : Recommendations

Physical Layer

- Need for new principles of operation
- Using AC versus DC

□ Infrastructure Layer

- Sharing infrastructure investments
- Need for overall covering architectures

Business Layer

- Need for trust raising technologies
- Need for adequate Service Management & Ops

General recommendations

- Need for adequate education
- Adaptation of legislation

ETIP SNET WG4 Task Force 2 : Highlights

Digital Use Cases (services)

Use Cases (UC) – Main Outcome

Infrastructure Layer

- Monitoring, visualisation, and analytics per stakeholder
- Use Cases between DSO and TSO
- Democracy by Design use case (+ social networks)

Physical layer

- Deliver Flexibility to the market
- Use Case from Agder Energi Norway
- Preventive Maintenance smart metering use case
- EV / mobility use case

Business Layer

- Increasing self consumption BLOCKCHAIN Use Case 1
- BLOCKCHAIN Use Case 2
- Local Energy Community
- Democracy by design
- > Digital twin

WG4 Task Force 2 : Ilustration of the Distributed Flexibility Marketplace

Dispatch and activation of flexibility Utilize distributed interface flexibility Real time Optimize Acquire Distributed data distributed grid volume & flexibility operations flexibility Distributed DSO marketplace optimization Forecast Assess Flexibility Registration Optimize Flexibility load flow flexibility bid/offers of flexibility for next 24 volume & containg asset based hrs cost volume/price on meter ID Flexibility Trading asset interface properties Independent marked operator

Digital Use Cases (services)

ETIP SNET WG4 Task Force 2 : Recommendations

Digital services

- Enabling monitoring, visualization, and analytics for every stakeholder group
- Building data hubs
- Cross-sector coupling needed to offer complete service to customer
- Local energy communities offer benefits but need further work on regulation and ownership structure
- strong collaboration between industry leaders and utilities is needed
- Existing infrastructure such as smart metering should be further exploited and utilized
- Establishing Innovation/Expert centers case in point for EV penetration
- Data transformation case of digital twin
- Decomposing blockchain challenges through research
- Customer empowerment needs not only technology but behavioural change
- TSO-DSO cooperation and coordination

Technology

Policy

• Artificial Intelligence

- Authentication
- Vision Cybersecurity Centralized vs. Distributed
- Huge Sensor Databases
- Cloud Computing
- Safety intersecting Security
- Blockchain
- Predictive Analytics
- System Integrity

- Metrics
- Existing Related/Background Efforts
- GDPR
- Naming Risk Cost Benefit
- Anonymisation Aggregation
- Privacy Layer
- NIS Directive
- Sharing of Vulnerabilities
- Training and Policy Amendments

Future Challenges

Dicital

Cyber Security (Robust)

- Progress Considerations
- Societal Impact
- Quantum Processing
- Quantifying Impacts
- New Crypto Environments
- Data Stream Challenges
- Bio-Nano Challenges
- Robotics Safety Impact
- Autonomous Vehicles Regulation

Technology

- 1. Al will help cybersecurity industry to efficiently monitor sophisticated threats
- 2. Blockchain is considered as a promising technology to address authentication
- 3. Blockchain offers a secure decentralized way to guarantee the veracity of various transactions

Digita

Cyber Secu (Robust

- 4. Digitalization enables and relies on the massive deployment of sensors that improve analysis
- 5. IoT enabled devices will make the energy system more transparent and efficient with Analytics
- 6. For highly networked components, safety is not reachable without cybersecurity
- 7. Machine Learning enables predictive analytics which helps detecting specific cyber attacks
- 8. OT/IT Cybersecurity architecture raises the question of on-premise vs cloud based calculation
- 9. Grid optimization application are suitable to be deployed in a cloud environment; however safety or security relevant grid control requires still a decentralized grid asset deployment

Policy

- 1. Metrics and frameworks should be developed for decision making of cybersecurity risks
- 2. Stakeholders living in isolated silos need a communication platform (IT, TSOs, DSOs, Policy).

Diaita

Robusi

- 3. Cybersecurity research at a meta level should be stimulated among the Member States
- 4. Transparency of data flows and standardized data models are required comply with GDPR
- 5. Cost benefit analyses shall be considered (e.g., black out simulators).
- 6. Research on regulation securing Cybersecurity investments is recommended
- 7. The NIS directive boosts cooperation between (US) MS for cybersecurity. Same should be for EU
- 8. Obscurity is not equal to security
- 9. Knowledge databases are used to share and access known vulnerabilities
- 10. Regular trainings are key to make our critical infrastructure resilient against cyber-attacks

Future challenges

- 1. Society and energy users need awareness about cybersecurity in the energy use
- 2. Involvement of energy users is necessary to achieve the desired level of risk protection

Diaita

Robus

- 3. Quantum cryptography is a promising disruptive computing technology (US)
- 4. Simulation is promising to quantify cyber-attack impacts on energy systems
- 5. Research should include field demonstrations with cryptographic open protocol solutions
- 6. New communication technologies, like 5G need to guarantee SLAs for critical infrastructures
- 7. Bio- and nano-technologies will raise the number of cyber threats which require research
- 8. Programming tools need to offer new testing and simulation frameworks
- 9. Security protocols for life forms need to guide customers at home with DIY CRISPR Kits
- 10. Robotics brings new threats which requires research like Physical Unclonable Functions (PUF)
- 11. Investigate Autonomous vehicles, like drones and cars, bringing new threats for energy grids

Digital Opportunity

\$387B Eliminate

Downtime

\$60B Digitalize Maintenance

\$]• Ag

\$191B Match Supply & Demand

\$68B Aggregate Supply

\$69B Energy Monagement

\$1.3T

Economy

\$2.0T Society

Thanks for your attention

More information:

3

🗄 etip-snet.eu

info@etip-snet.eu

@etipsnet

linkedin.com/groups/8208338

European R&I energy policies

- Energy security, solidarity and trust
- A fully integrated European energy market
- Energy Efficiency (EE) first: moderation of demand
- Transition to a low-carbon society: decarbonising the economy,
- Research, Innovation and Competitiveness

From a fragmented EU advisory to an integrated framework

« <u>E</u>UROPEAN <u>T</u>ECHNOLOGY AND <u>INNOVATION PLATFORM</u> <u>SMART NETWORKS FOR</u> <u>ENERGY TRANSITION »...</u>

... addresses the innovation challenges in energy system and market evolution necessary for achieving climate protection and renewables integration with affordability and security of supply

... beyond smart electricity grids