

Electric Vehicle Battery Swapping Station

Hrvoje Pandžić Faculty of Electrical Engineering and Computing University of Zagreb (FER) ETIP SNET South-Eastern Region Workshop

FER, Zagreb, September 19, 2018

About EVBASS

- Funded by the Croatian Science Foundation
- Project budget 100k Eur
- Associate partners:
 - Aalborg University
 - HEP Distribution System Operator
- October 2015 September 2016

Objectives of EVBASS

- Development of viable business models for a BSS (Battery Swapping Station):
 - Optimization of the BSS operation (interaction with the market)
 - Control and communication within a BSS
- Impact of a BSS on distribution/transmission network
- Deployment of testbed facility

What is a BSS

- Participates in electricity market by performing arbitrage and may provide reserves
- Schedules batteries to perform in three modes:
 - **G2B** (Grid-to-Battery): Charge battery energy **from** the grid
 - **B2G** (Battery-to-Grid): Discharge battery energy **to** the grid
 - **B2B** (Battery-to-Battery): Transfer energy between batteries

Future Transportation System

- Political drivers:
 - EU's 2030 Energy Strategy
 - No fossil fuels goal by 2050 in Denmark
- Economy of electric vehicles:
 - Total cost of ownership
 - Future cost of batteries
 - V2G issue
- Social acceptance:
 - People's skepticism on the practicality
 - Customers will not choose a new product giving up on their comfort

Future Transportation System

- Technological challenges:
 - High energy density li-ion batteries
 - Battery degradation
 - Charging infrastructure
- Legislative incentives and unresolved barriers:
 - Direct subsidies (one-time bonus) and fiscal incentives, such as reduced taxes
- Environmental impacts:
 - Reduction in global and local pollutants, as well as noise
 - Disposal and recycling issues

Risk Analysis

 The proposed methodology for quantifying the risks of not meeting the 15% EV integration in the next five years

SWOT Anylsis

Strengths	Weaknesses
Safety aspects of EVs are at least as good as that of ICE vehicles	Diversity of EV models (from initial need for standard models to larger model diversity in the future)
Interaction with DSO (coordinated operation with variable and uncertain sources, such as RES)	Potential buyers not aware of the incentives and tax reductions or these do not adequately compensate for new technology - cost savings skepticism
Engine efficiency	High initial cost of EV
Global and local emission impact	Cost of charging infrastructure
Noise pollution reduction	Cost of batteries
	Battery degradation
	Range-anxiety, lower EV range than of CV
	Education and income (limiting the potential EV market)
	Long charging periods (slow chargers at home)
	Standardization of chargers
	Development and standardization of batteries

SWOT Anylsis

Opportunities	Threats
EU Strategies are promoting EVs	Global financial crisis affects purchase power
EV are reducing fossil fuel dependency	Additional investments into electric grid infrastructure
Integration of EV reduces energy needs	
Integration of EVs supports a strategic goal of CO_2 emissions reduction	
EV as a way of increasing transportation efficiency	
EV as a flexibility tool, increasing the share of RES	
Business case for aggregators	
Lower operation and maintenance cost than of ICE vehicles	
Financial incentives for buying EV	
Corporate social responsibility	

Risk Map

What is your general stand on the future of EVs?

Survey on BSS In case you went on a longer trip with an EV, would

In case you went on a longer trip with an EV, would you consider using only superchargers, i.e. pulling over for half an hour every 250 km (cca. 150 miles) in order to recharge, or would you insist on using a battery swapping station as a mean for receiving a full charge within 2 minutes?

I am perfectly fine with only superchargers

I would like to have a choice, but I would always use a supercharger if that is a cheaper option

I would definitely use a battery swapping station whenever I can, even if it is more costly than the supercharger

 $0\% \quad 10\% \quad 20\% \quad 30\% \quad 40\% \quad 50\% \quad 60\%$

They will completely replace gasoline-powered cars in the following years

They will be a part of the transportation system, but will never take over the throne from the gasoline-powered vehicles

They will always remain a toy for enthusiasts

What is the main reason for you not to buy an EV?

Integration of BSS in Distribution Networks

Integration of BSS in Distribution Networks

BSS Operational Model

- Price taker¹ or price maker?
- Each battery needs to be tracked individually
- Computational tractability
- Acting in reserves market as well

¹ Mushfiqur Sarker, Hrvoje Pandzic, and Miguel Ortega-Vazquez. Optimal Operation and Services Scheduling for an Electric Vehicle Battery Swapping Station, *IEEE Transactions on Power Systems*, vol. 30, no. 2, March 2015, pp. 901-910

BSS Operational Model

- Price maker model needs to consider the market interactions
- Instead of tracking each battery individually, we use battery clusters depending on the state of energy
- This heavily increased computational tractability
- Reserve capacity is modeled as well, which increases the BSS revenue

BSS Operational Model

• Clustering technique

$$\begin{aligned} & \underset{\Xi_{\mathrm{UL}}}{\operatorname{Max}} \sum_{t,n} \pi_n \cdot X_{t,n} - \sum_{t,n} \overline{\pi} \cdot (CN_{t,n} - ACN_{t,n}) - \sum_t \delta \cdot b_t^{\mathrm{deg}} \\ & - \sum_t \lambda_{1,t,s^{\mathrm{BSS}}} \cdot (q_t^{\mathrm{ch}} - q_t^{\mathrm{dis}}) + \sum_t r_t^{\mathrm{up}} \cdot \mu_{10,t} + \sum_t r_t^{\mathrm{dn}} \cdot \mu_{11,t} \end{aligned}$$

BSS Operational Model

• Results

Laboratory Battery Testing

- A dedicated bidirectional AC/DC converter
- Characteristics:
 - Nominal power: 1 kW
 - Output voltage: 0 20 VDC
 - Output current: -50 to 50 ADC
 - Input: 50 Hz, 230 VAC
 - Analogue signals 0 10 VDC
 - Remote battery voltage sensing
- Control using NI LabVIEW

Laboratory Battery Testing

Laboratory Battery Testing

Battery Charging Characteristic

(b) Charging current 0.56 A (0.2C)

$$\begin{split} s_t &= s_{t-1} + p_t^{\mathrm{ch}} \cdot \Delta^{\mathrm{T}} - p_t^{\mathrm{dis}} \cdot \Delta^{\mathrm{T}}, \quad \forall t \in \Omega^{\mathrm{T}} \\ s_t &\leq SOC^{\mathrm{max}}, \quad \forall t \in \Omega^{\mathrm{T}} \\ p_{t,}^{\mathrm{ch}} &\leq P^{\mathrm{bat}}, \quad \forall t \in \Omega^{\mathrm{T}} \\ p_t^{\mathrm{dis}} &\leq P^{\mathrm{bat}}, \quad \forall t \in \Omega^{\mathrm{T}} \end{split}$$

Consequences

Key Results and Future Needs

- Model of a BSS as price maker
- Development of an accurate battery charging model
- Is there a better way of modeling a price maker player than using bilevel modeling?
- Optimal battery operation models need to acknowledge the dependency of the cycle efficiency degradation on charging speed

Publications

- M. R. Sarker, H. Pandžić, K. Sun and M. A. Ortega-Vazquez. Optimal operation of aggregated electric vehicle charging stations coupled with energy storage. IET Generation, Transmission & Distribution, 2017.
- I. Pavić, T. Capuder, and I. Kuzle. A Comprehensive Approach for Maximizing Flexibility Benefits of Electric Vehicles. IEEE Systems Journal, 2017.
- I. Pavić, T. Capuder, and I. Kuzle. Fast Charging Stations Power and Ancillary Services Provision. PowerTech 2017.
- I. Pavić, M. Beus, H. Pandžić, T. Capuder, and I. Štritof. Electricity markets overview – market participation possibilities for renewable and distributed energy resources. European Energy Market 2017.
- I. Pavić, N. Holjevac, M. Zidar, I. Kuzle, and A. Nešković. Transportation and Power System Interdependency for Urban Fast Charging and Battery Swapping Stations in Croatia. MIPRO, Opatija, 2017.

Thank you for Your Attention

Evbass.fer.hr

Hrvoje.pandzic@fer.hr

