

New generation of electronic equipment to build a more secure power grid

Iñaki Angulo (Tecnalia)

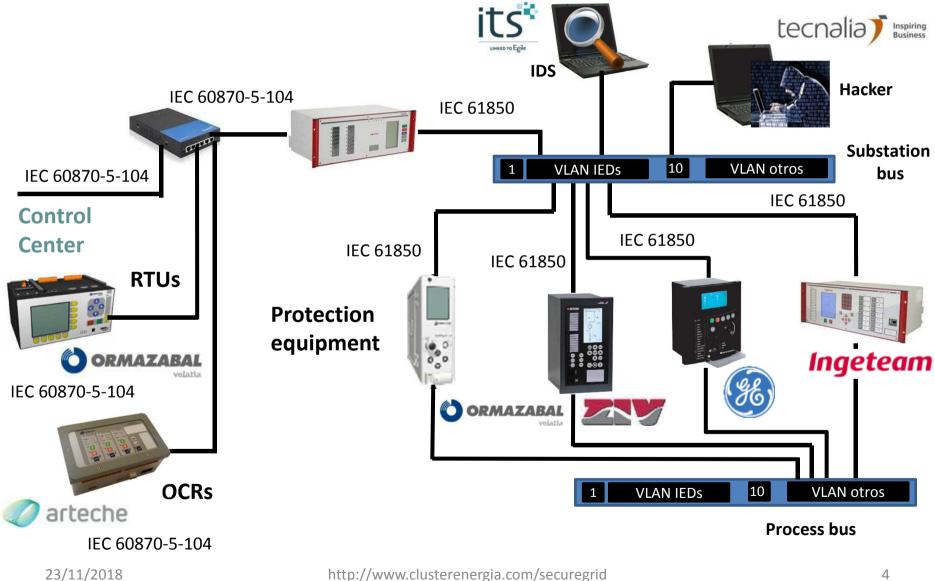
Madrid, 23rd November, 2018

Project supported by the Departament of Economic Development and Infrastructure of the Basque Government (HAZITEK Programme) and the European Regional Development Fund (ERDF).

- The number of external connection attempts has increased in the last years
- Regulation is confused
- The measures applied in other sectors are not directly applicable:
 - Availability versus confidentiality. We can not disconnect a system when we suspect an attack.
 - Response times.
 - Geographic and equipment dispersion

- Funded by the Basque Government
- HAZITEK Programme (2016-2018)
- Budget: ~ 4M€

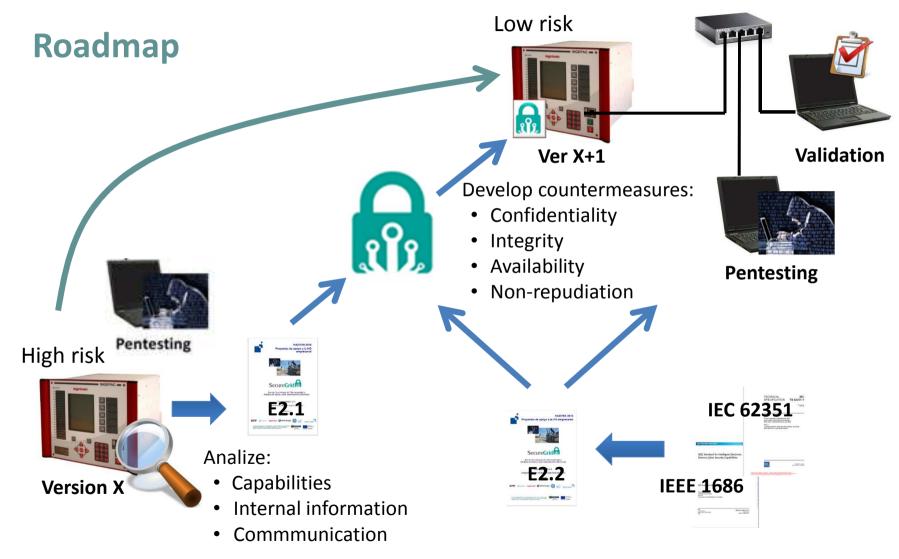
Fondo Europeo de Desarrollo Regional (FEDER) "Una manera de hacer Europa"


uropar Batasuna Unión Europea "Europa egiteko modu bat"

- Develop technology to Increase the security of the IEDs in electrical substations.
- Positioning the Basque Country as an international reference in cybersecurity for Smart Grids.

23/11/2018

- Which regulation should I apply?
 - IEC 62443. Evaluation of the safety of systems and equipment.

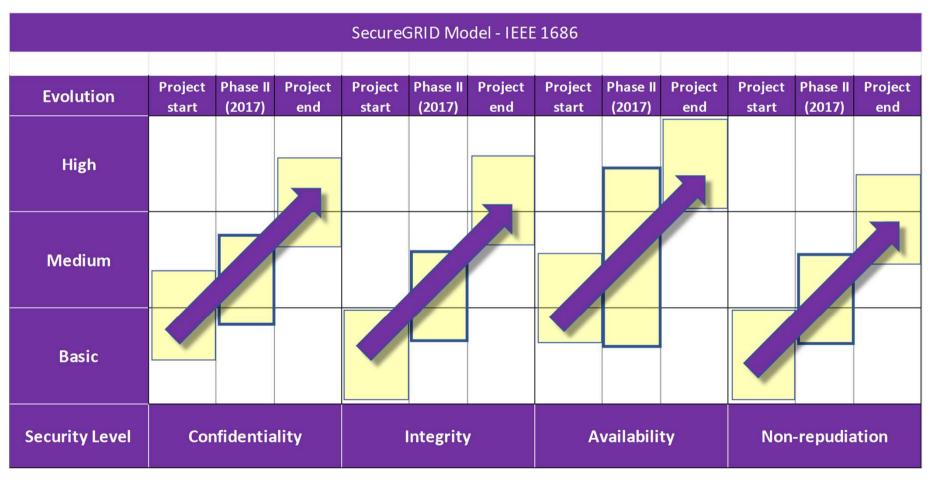

- IEEE 1686. Security model for IEDs.
- How to apply it?
 - IEC 62351 (IEC 60870, IEC 61850)
 - Part 3 IEC 60870-5-104
 - Part 4 to 6 IEC 61850
 - Part 8 RBAC
 - Part 10 Architecture
- How to certify it?
 - Testbook of the IEEE 1686

SecureGrid Model – Specification IEEE 1686					
High (A)	 5.4.x – Communication encryption 5.5.x – Firmware signing 	 5.4.x – Communication encryption 5.5.x – Firmware signing 	 5.5.x – Role management in the config SW 5.5.x – Firmware signing 	5.4.x – Communication encryption	
Medium (B)	5.1.x – Role management 5.5.x – Role management in the config SW	 5.1.x – Role management 5.5.x – Role management in the config SW 	 5.3.x – Events and alarms monitoring 5.6 – Port activation and deactivation 	 5.1.x – Role management 5.2.x – Audit record 5.3.x – Events and alarms monitoring 5.5.x – Role management in the config SW 	
Low (C)	 5.1.x – Access control to IED 5.5.4 – Access control to config SW 	 5.1.x – Access control to IED 5.3.x – Events and alarms monitoring 5.5.4 – Access control to config SW 	5.1.x – Role management 5.2.x – Audit record	 5.1.x – Access control to IED 5.5.4 – Access control to config SW 	
Level Req.	Confidentiality	Integrity	Availability	Non-repudiation	

Improvements to the equipment

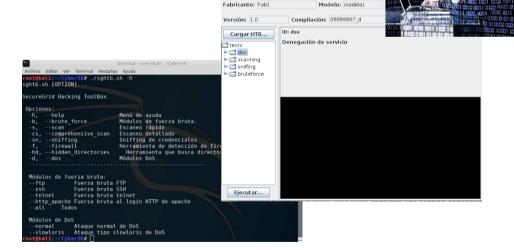
IEEE 1686

Nuevas Tecnologías de Ciberseguridad y Analítica de Datos para Subestaciones Eléctricas


•	 Today, the equipment incorporate: improved generation and management of passwords. disconnection after a period of inactivity role-based access systems 	Clauses 5.x.1
	 generation and management of an audit record containing basic information on events and alarms related to the security of the equipment 	Clauses 5.x.2
•	Ongoing work:	
	 monitoring of the activity related to security aspects 	Clauses 5.x.3
	 encryption of communications, signature of the firmware and authentication of the 	Clauses 5.x.4
	configuration software	Clauses 5.x.5
	 activation and deactivation of communication ports 	Clauses 5.6

23/11/2018

Current situation - november 2018



Ethical hacking toolbox

• Allows to perform a set of penetration tests to discove the vulnerabilities that the device presents:

Nuevas Tecnologías de Cibe

- Discovery of the services offered by the device.
- Obtaining the credentials of the services.
- Denial of Service
- Integrated tools:
 - Nmap
 - Metaspoloit
 - W3af
 - Ettercap
 - Slowloris

seguridad y Analítica de Datos para Subestaciones Eléctricas

• Manufacturers are immersed in a process to improve the security of electrical equipment:

- Make it more difficult to take control of the equipment from an external system, and avoid spreading to other equipment.
- Registration of actions related to security.
- Encrypted and signed communications.
- Strengthen the equipment availability.
- Added value of collaboration between competitors.
- Ethical hacking as a tool applied to the improvement of security of IEDs during the manufacturing process.
- It is essential to combine the measures developed in the project (OT) with improved IT security measures.

There is still a lot to do...!

- Share and check the project results with utilities.
- Definition of technological lines for the project to evolve
 - Recovery from attacks
 - Honeypots
- Adaptation of electronic equipment to the evolution of regulation, which increasingly includes more security aspects.

- Tecnalia has a Cybersecurity Laboratory for Smart Grid:
 - It is part of the Cybersecurity Node of the "Digital Innovation Hub" of Advanced Manufacturing in the Basque Country.
 - It allows the simulation of new (and more complex) attack scenarios, as well as testing new equipment and attack detection systems.

Thank you!

inaki.angulo@tecnalia.com

http://www.clusterenergia.com/securegrid

Project supported by the Department of Economic Development and Infrastructure of the Basque Government (HAZITEK Programme) and the European Regional Development Fund (ERDF).

Cluster Ener

Unión Europea

Eskualde Garapenerako Europar Batasuna Europar Funtsa (EGEF) "Furona editeko modu hat

