

Presentation of recent and ongoing R&I projects in the scope of the ETIP SNET

August 2018

Presentation of recent and ongoing R&I projects in the scope of the ETIP SNET

INTENSYS4EU Deliverable D3.1: Project monitoring – Part 1

Authors: DOWEL MANAGEMENT & RSE

Quality check: ZABALA, BACHER

Delivery date: August 2018

EXECUTIVE SUMMARY

INTRODUCTION

The European Technology & Innovation Platform Smart Networks for Energy Transition (ETIP SNET) is guiding Research and Innovation (R&I) to support Europe's energy transition¹. For that purpose, a 10-year R&I roadmap covering 2017-26² was adopted in December 2016. It addresses not only smart electricity grids but also interactions with gas and heating and cooling networks and the integration of all flexibility solutions into energy systems, including energy storage and power conversion technologies.

The 10-year R&I roadmap will be updated by 2020 to define the R&I activities planned for the period 2021-2030. In order to do this, a thorough assessment of recent and ongoing R&I projects contributing to the activities planned within the roadmap is to be done. This is the purpose of the "monitoring activity" carried out by the INTENSYS4EU support team³.

THE MONITORED PROJECTS

The present report contributes to the monitoring activity by analysing and disseminating R&I projects' results lying in the ETIP SNET scope. It has been elaborated following a survey conducted towards 250+ projects, amongst which 121 projects have contributed: 43 of them are co-funded by FP7 or Horizon 2020 and 78 are funded through other instruments, in general at national or regional level⁴.

The budget range for these projects varies from less than 100 k€ to more than 20 M€.

Projects' coordinators are predominantly Research & Innovation stakeholders (research centres, universities, consultants, etc.). Regulated operators (TSOs and DSOs), energy technology providers, ICT and software providers and energy suppliers are also coordinating R&I projects.

Spain and Germany are within the top-3 countries represented in the coordinating organizations of the 121 projects, both for FP7 & H2020 and for other projects. Number 3 is France for FP7 & H2020 projects and Norway for other projects. Stakeholders from Eastern Europe are rarely coordinating FP7 & H2020 projects, with some exceptions from Slovenia, Greece and Cyprus. The situation is more balanced with regards to other projects.

The types of technologies and services tackled by the projects can be grouped into five main categories which are guite equally addressed:

- Technologies for consumers, especially to enable demand response;
- Grid technologies, including hardware and software solutions to improve network • management;
- Storage and power-to-X⁵ technologies, connected at transmission or distribution level:
- Power generation technologies, including dispatchable and non-dispatchable • technologies of all sizes;

¹ More information at <u>https://www.etip-snet.eu/about/etip-snet/</u>.

² Downloadable at https://www.etip-snet.eu/wp-content/uploads/2017/03/Final 10 Year ETIP-SNET RI Roadmap.pdf

³ The INTENSYS4EU project supports ETIP SNET activities and has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 731220. More information at <u>https://www.etip-sne</u> ⁴ These projects might also benefit from EU funds, for instance from CEF, LIFE, ERDF or ERA-Net. -snet.eu/intensys4eu/.

⁵ Power-to-Gas, Power-to-Heat, Power-to-Liquid.

• Market: electricity market and ancillary services.

The overall benefits brought by the projects can be grouped into six main categories, the first three being those most often declared by the monitored projects:

- **Improved network management**, corresponding to measures enhancing the transmission and distribution network management, for instance congestion reduction, improvement of grid security and reliability;
- **Decreased carbon emissions,** corresponding to benefits related to decrease of Greenhouse Gas (mainly CO₂) emissions, for instance thanks to the increase of renewable penetration;
- Efficient business models & market designs, corresponding to projects working on innovative business models or market designs, aiming at bringing economic benefits to society;
- **Reduced energy bills,** corresponding to benefits linked to the decrease of energy costs for consumers and/or the reduction of energy consumption;
- Decreased network costs, corresponding to a reduction in CAPEX and/or OPEX of distribution and/or transmission networks;
- **Improved social acceptance**, corresponding to measures so as to foster the acceptance of technologies by the society.

PROJECTS' KEY EXPLOITABLE RESULTS (KER)

Within the monitoring survey, project representatives have been asked to identify up to 5 project's results which are the most promising for exploitation (Key Exploitable Results or KER). In total, **281 different KER** have been identified.

Different natures of KER have been defined:

- Methodology: methodologies for designing new rules, energy scenarios, etc;
- **Software**: development or demonstration of simulation tools, decision making support tools, etc.;
- Hardware: development or demonstration of pieces of hardware;
- Database: quantified scenarios, results of cost-benefit analyses, etc.;
- Policy, Regulation, Market: business models, policy recommendations, etc.

The dominant category of the KER declared by the projects corresponds to software tools (37%), followed by methodologies (23%) and hardware (22%) tools. A significant number of KER are also corresponding to policy, regulation or market recommendations (15%). Only a few correspond to a database (3%).

The majority of KER have a Technology Readiness Level of 7 (system prototype demonstration in operational environment).

In terms of future exploitation of these KER, most of them are expected to be exploited within the next 2 years (42%) or within the next 2 to 5 years (35%). Next steps towards exploitation are in general internal to project consortium (further testing, further demonstration, internal deployment, etc.).

Still, barriers to exploitation have been identified. They are mainly about regulatory and market conditions. Further investment before effective exploitation might also be needed, in general between 100 k€ and 1 M€.

TABLE OF CONTENTS

EXECUTIVE SUMMARY	3
INTRODUCTION	3
THE MONITORED PROJECTS	3
PROJECTS' KEY EXPLOITABLE RESULTS (KER)	4
INTRODUCTION	.11
CONTEXT: ETIP SNET MONITORING ACTIVITY	11
METHODOLOGY APPLIED TO ELABORATE THE PRESENT REPORT CREATION OF ETIP SNET PROJECT DATABASE GATHERING OF PROJECTS' DATA	11
STRUCTURE OF THE PRESENT REPORT	12
PART 1 – OVERVIEW OF PROJECTS' MAIN FEATURES	.13
ORIGIN OF THE PROJECTS' FUNDING AND BUDGET	13
TYPE AND LOCATION OF COORDINATING ENTITIES	14
TECHNOLOGIES AND SERVICES TACKLED	16
BENEFITS BROUGHT BY THE PROJECTS	17

PART 2 – OVERVIEW OF PROJECTS' KEY EXPLOITABLE RESU (KER)	
DESCRIPTIVE FEATURES OF PROJECTS' KEY EXPLOITABLE RESULTS	18
NUMBER OF KEY EXPLOITABLE RESULTSPER PROJECT NATURE OF KEY EXPLOITABLE RESULTS OUTPUT TECHNOLOGY READINESS LEVEL (TRL) OF KEY EXPLOITABLE RESUL	18 19
PROJECTIVE FEATURES OF KEY EXPLOITABLE RESULTS	21
EXPECTED EFFECTIVE USE OF KEY EXPLOITABLE RESULTS NEXT PROJECT STEPS FOR THE EXPLOITATION OF KEY EXPLOITABLE RESULT TIME TO EXPLOITATION OF KEY EXPLOITABLE RESULTS	ΓS 22 23
BARRIERS TO EXPLOITATION OF KEY EXPLOITABLE RESULTS	

PART 3 – INDIVIDUAL PROJECT SHEETS	
FP7 & H2020 PROJECTS	27
ANYPLACE	
ARROWHEAD	

INVESTMENT NEEDED BEFORE EXPLOITATION OF KEY EXPLOITABLE RESULTS...... 25

Presentation of recent and ongoing R&I projects in the scope of the ETIP SNET

DREAM	
eBADGE	
ELSA	
EMPOWER	
EU-SysFlex	
FLEXCOOP	
FLEXICIENCY	
FLEXITRANSTORE	
FutureFlow	
GRIDSOL	
5	
-	
_	
-	
_	
_	
WISEGRID	
OTHER PROJECTS	
-	
	59 59 59
-	
-	63
LL Upyraueu Dioyas	

Energy Data Service	65
IHSMAG	66
FINLAND	
EL-TRAN	
HEILA	
VAGE	
WIVE	
FRANCE	
Poste Intelligent	
SUBZERO	
GERMANY	
ADELE	69
ALEGRO	70
AMPACITY	70
DC-Blocking Device	71
FLEXITES	
Integrated IT-Systems	
KRYOLENS	
KWK Flex	
STENSEA	
SWARMGRID	
Variable Shunt Reactor	
HUNGARY	
SMART SYNERGY	
IRELAND	75
DLR	75
DS3	
Power Off and Save	
Power Line Guardian / Tower Router	
Schwungrad Rhode Hybrid Test Facility	
ITALY	
ADVANCE DISPATCHING & LFOR	
LIVING GRID	
STORAGE LAB	
LATVIA	
ITCITY	
LITHUANIA	
DIGITALIZATION OF THE VIDIŠKIAI TRANSFORMER SUBSTATION	81
NETHERLANDS	
CO-RISE	81
DYNAMO	82
NORWAY	82
CEDREN HydroBalance	
CINELDI	
FASAD	
FLEXNETT	
MODFLEX	
STRONgrid	
PORTUGAL	86
Graciosa	86
SINAPSE	
SLOVENIA	
NEDO project	86
SINCRO.GRID	
SINCRO.GRID	
SPAIN	86 87 87 88 88 88 89
SPAIN	86 87 87 88 88 88 89 89
SPAIN	86 87 87 88 88 89 89 89 89
SPAIN	86 87 87 88 88 89 89 89 89 90

Presentation of recent and ongoing R&I projects in the scope of the ETIP SNET

HVDC LINK	
IDEAS	
LIFE Factory Microgrid	
LIFE ZAESS	
MMC	
NOISEEK	
REDACTIVA	
RENOVAGAS	
OSIRIS	
SECUREGRID	
STORE	
SWEDEN	
CLOUDGRID	
LVM	
Smart Grid Gotland	
SWITZERLAND	100
3D DSS	
Hybrid HVAC / HVDC overhead lines in Switzerland	100
NEXUS	
UNITED KINGDOM	
Hybridised LAES	101
SMARTER NETWORK STORAGE	102
WISE-PV	102

INDEX OF IMAGES, TABLES AND FIGURES

FIGURE 1. SHARE OF FP7 & H2020 PROJECTS AND OTHER PROJECTS	13
FIGURE 2. BUDGET RANGES FOR FP7 & H2020 PROJECTS AND OTHER PROJECTS	13
FIGURE 3. TYPE OF PROJECTS' COORDINATING ENTITIES OF FP7 & H2020 PROJECTS	14
FIGURE 4. TYPE OF PROJECTS' COORDINATING ENTITIES OF OTHER PROJECTS	14
FIGURE 5. LOCATION OF COORDINATORS OF FP7 & H2020 PROJECTS	15
FIGURE 6. LOCATION OF COORDINATORS OF OTHER PROJECTS	15
FIGURE 7. TECHNOLOGIES AND SERVICES TACKLED BY FP7 & H2020 PROJECTS	16
FIGURE 8. TECHNOLOGIES AND SERVICES TACKLED BY OTHER PROJECTS	16
FIGURE 9. BENEFITS BROUGHT BY THE PROJECTS	17
FIGURE 10. NUMBER OF KER BY PROJECT	
FIGURE 11. NATURE OF KER	19
FIGURE 12. TRL LEVEL OF KER	20
FIGURE 13. EXPECTED EFFECTIVE USE OF KER	21
FIGURE 14. NEXT STEPS TOWARDS THE EFFECTIVE EXPLOITATION OF KER	22
FIGURE 15. TIME TO EXPLOITATION OF KER	23
FIGURE 16. BARRIERS TO EXPLOITATION	24
FIGURE 17. INVESTMENT NEEDED BEFORE EXPLOITATION OF KER	25

PLAN. INNOVATE. ENGAGE.

INTRODUCTION

CONTEXT: ETIP SNET MONITORING ACTIVITY

The European Technology & Innovation Platform Smart Networks for Energy Transition (ETIP SNET) is guiding Research and Innovation (R&I) to support Europe's energy transition⁶. For that purpose, a 10-year R&I roadmap covering 2017-26⁷ was adopted in December 2016. It addresses not only smart electricity grids but also interactions with gas and heat networks and the integration of all flexibility solutions into energy systems, including energy storage and power conversion technologies.

The 10-year R&I roadmap will be updated by 2020 to define the R&I activities planned for the period 2021-2030. In order to do this, a thorough assessment of recent and ongoing R&I projects contributing to the activities planned within the roadmap, is to be done. This is the purpose of the "monitoring activity" carried out by the INTENSYS4EU support team⁸.

The objective of the monitoring activity is two-fold:

- 1. To analyse and to disseminate results from R&I projects being in the scope of the ETIP SNET towards the energy community;
- 2. To measure the coverage degree of each R&I item of the roadmap and decide which R&I activities deserve to be maintained in the next roadmap, and which are sufficiently well covered by results of recent and ongoing projects and could consequently be removed ("gap analysis").

The present report contributes to the first sub-objective of the monitoring activity by analysing and disseminating R&I projects' results lying in the ETIP SNET scope. An upcoming report, to be published during fall 2018, will address the second sub-objective.

METHODOLOGY APPLIED TO ELABORATE THE PRESENT REPORT

Creation of ETIP SNET project database

First, a list of R&I projects in line with the ETIP SNET activities has been created. These R&I projects are either co-funded by the EU Research and Innovation programmes, i.e. FP7⁹ or Horizon 2020 (H2020)¹⁰, or are nationally or regionally funded¹¹. Sources of information have been:

- The BRIDGE initiative gathering Horizon 2020 projects in the field of Smart Grids and Energy Storage¹²;
- Other projects provided by INTENSYS4EU partners (ENTSO-E, EDSO for Smart Grids, EASE and EERA) and by ETIP SNET members. These projects can be EUfunded or not.¹³

In total, the ETIP SNET project database gathers 250+ projects.

⁶ More information at <u>https://www.etip-snet.eu/about/etip-snet/</u>.

⁷ Downloadable at https://www.etip-snet.eu/wp-content/uploads/2017/03/Final_10_Year_ETIP-SNET_RI_Roadmap.pdf.

⁸ The INTENSYS4EU project supports ETIP SNET activities and has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 731220. More information at https://www.etip-snet.eu/intensys4eu/. ⁹ European Union's Research and Innovation funding programme for 2007-2013: see https://www.etip-snet.eu/intensys4eu/.

¹⁰ European Union's Research and Innovation funding programme for 2007-2013. see <u>https://ec.europa.eu/programmes/horizon2020/</u>.

¹¹ These projects might also benefit from EU funds, for instance from CEF, LIFE, ERDF or ERA-Net.

¹² More information at <u>https://www.h2020-bridge.eu/</u>

¹³ Selected non-EU funded projects are also presented at the ETIP SNET regional workshops organised every year. More information at https://www.etip-snet.eu/regional-workshops/.

Gathering of projects' data

A survey has been conducted amongst the 250+ projects in the ETIP SNET database through an online questionnaire.

This questionnaire was structured as follows:

- General information about projects;
- Specific information of projects' Key Exploitable Results (KER);
- Relation between each project's KER and the ETIP SNET R&I roadmap 2017-26: this aspect is not addressed with the present report, it will be detailed in an upcoming report to be published in fall 2018.

A total of 121 projects have participated in the survey and are therefore described in the present report. It is assumed that these projects are a representative sample of the whole database. However, some bias might occur.

STRUCTURE OF THE PRESENT REPORT

The present report is structured as follows:

First, analytics about general project features are presented in order to draw a general picture of the 121 projects that participated in the survey:

- Nature of funding: FP7&H2020 or other;
- Type and location of coordinating entities;
- Technologies and services tackled by the projects;
- Societal benefits brought by the projects.

Then, analytics about projects' Key Exploitable Results (KER) are presented, with a focus on their descriptive and projective features:

- Descriptive features: number and nature of KER, Technology Readiness Level;
- Projective features: expected effective use of KER, time to exploitation, next steps, barriers and investment needed before exploitation.

Finally, individual fiches are made for each project, presenting:

- Synthetic information about the project;
- A focus on their KER emphasizing 3 features:

KER	Name of the KER
14	Solution(s) brought by the KER
	Benefit(s) of the KER
?	Final beneficiary(-ies) of the KER

Important disclaimer: The analytics and fiches have been built based on the survey inputs from the different projects as well as on the information provided by official sources (project websites, CORDIS database¹⁵). For the purpose of this report, only synthetic information has been reported.

¹⁴ Icons made by Freepik, Pause08 and Vectors Market from www.flaticon.com

¹⁵ The CORDIS online database is the primary information source for EU-funded projects: <u>https://cordis.europa.eu/</u>

PART 1 – OVERVIEW OF PROJECTS' MAIN FEATURES

ORIGIN OF THE PROJECTS' FUNDING AND BUDGET

Amongst the 121 projects that have participated in the survey, 40 are co-funded by FP7 or Horizon 2020 and 78 are funded through other funding instruments as illustrated on Figure 1.

Figure 2 shows the different budget ranges both for FP7 & H2020 and other projects.

FP7 & H2020 projects belong to two main budget categories: 1 to 5 M€, and higher than 10 M€, only a few projects having a budget between 5 and 10 M€. This should correspond to Research and Innovation Actions (RIA) on one hand, and Innovation Actions (IA) on the other hand.¹⁶

Other projects have a more dispersed budget. One third of the projects have a budget below 1 $M \in$. 40% have a budget between 1 and 5 $M \in$. The rest has a budget above 5 $M \in$.

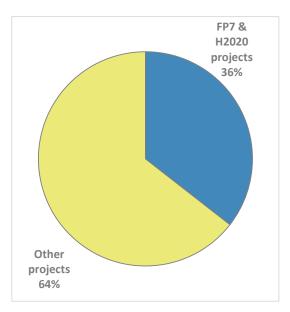


Figure 1. Share of FP7 & H2020 projects and other projects

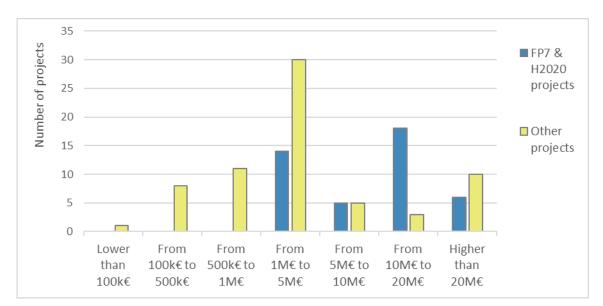
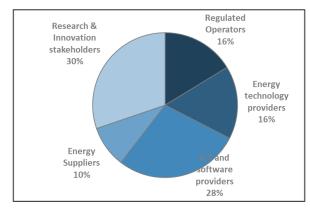


Figure 2. Budget ranges for FP7 & H2020 projects and other projects

¹⁶ See http://ec.europa.eu/research/participants/docs/h2020-funding-guide/grants/applying-for-funding/find-a-call/what-you-need-to-know_en.htm.


TYPE AND LOCATION OF COORDINATING ENTITIES

The following categorization for the projects' coordinating entities has been adopted:

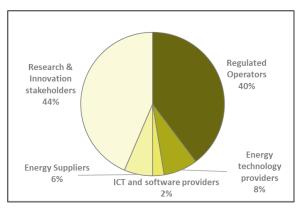

- **Regulated operators** are TSOs and DSOs as defined by the Electricity and Gas Directives;
- Energy technology providers gather manufacturers for energy transmission, distribution, generation, conversion and storage;
- ICT and software providers include software and telecommunication vendors;
- **Energy suppliers** include energy retailers, energy generators, energy service companies (ESCOs) or aggregators acting in energy markets;
- **Research & Innovation stakeholders** include research centres, universities, thinktanks, consultants and other stakeholders providing R&I-based services.

Figure 3 and Figure 4 display coordinating organizations within the monitored projects, for FP7 & H2020 projects and other projects.

In both cases, Research and Innovation stakeholders are the main category of coordinating entities. ICT and software providers are coordinating mainly FP7 & H2020 projects having participated in the survey, while they are coordinating only a small share of other types of projects. On the contrary, regulated operators are coordinating a large share of non FP7/H2020 projects.

The allocation of coordinating organization by countries is illustrated by Figure 5 (FP7 & H2020 projects) and Figure 6 (other projects).

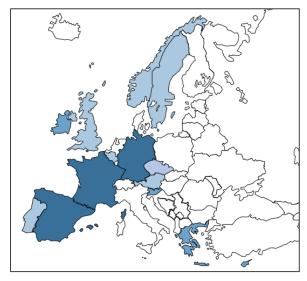
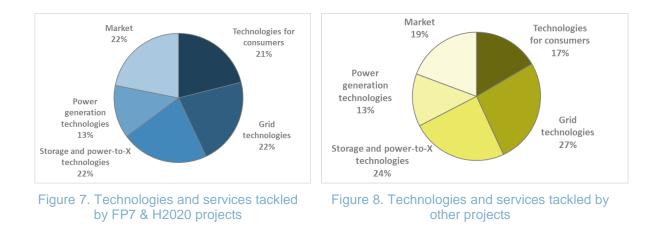


Figure 5. Location of coordinators of FP7 & H2020 projects

Figure 6. Location of coordinators of other projects

Spain and Germany are within the top-3 countries represented in the coordinating organizations of the 121 projects monitored, both for FP7 & H2020 and for other projects. Number 3 is France for FP7 & H2020 projects and Norway for other projects.

Stakeholders from Eastern Europe are rarely coordinating FP7 & H2020 projects, with some exceptions from Slovenia, Greece and Cyprus. The situation is more balanced with regards to other projects.



TECHNOLOGIES AND SERVICES TACKLED

A broad range of technologies and services are being tested by the projects. Five main categories are considered in the present report:

- Technologies for consumers, especially to enable demand response;
- **Grid technologies**, including hardware and software solutions to improve network management;
- Storage and power-to-X¹⁷ technologies, connected at transmission or distribution level;
- **Power generation technologies**, including dispatchable and non-dispatchable technologies of all sizes;
- Market: electricity market and ancillary services.

Figure 7 and Figure 8 show that the monitored projects are tackling all types of technologies and services in a quite balanced manner. Non-significant differences can be observed between FP7 & H2020 projects and other projects.

¹⁷ Power-to-Gas, Power-to-Heat, Power-to-Liquid.

BENEFITS BROUGHT BY THE PROJECTS

The following benefits brought by the monitored projects have been identified by the INTENSYS4EU support team:

- Efficient business models & market designs, corresponding to projects working on innovative business models or market designs, aiming at bringing economic benefits to society;
- **Decreased network costs,** corresponding to a reduction in CAPEX and/or OPEX of distribution and/or transmission networks;
- **Improved network management**, corresponding to measures enhancing the transmission and distribution network management, for instance congestion reduction, improvement of grid security and reliability;
- **Decreased carbon emissions,** corresponding to benefits related to decrease of Greenhouse Gas (mainly CO₂) emissions, for instance thanks to the increase of renewable penetration;
- **Reduced energy bills** corresponding to benefits linked to the decrease of energy costs for consumers and/or the reduction of energy consumption;
- **Improved social acceptance**, corresponding to measures so as to foster the acceptance of technologies by the society.

The allocation of projects' benefits is illustrated by Figure 9¹⁸. It shows that the top-3 benefits brought by the projects are an improved network management, decreased carbon emissions and efficient business models and market designs.

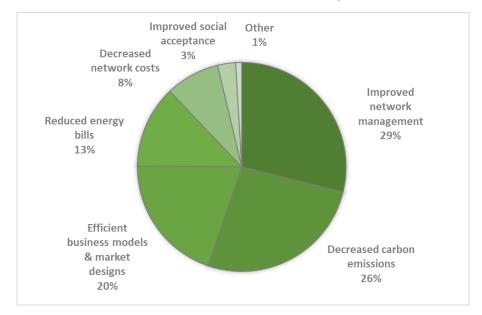
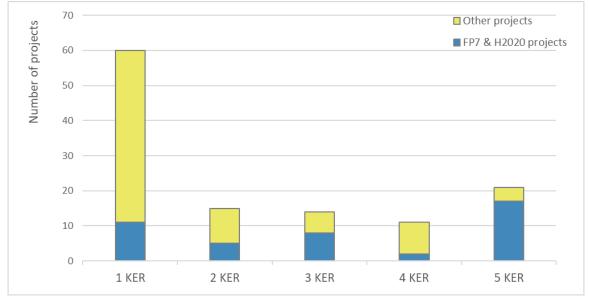


Figure 9. Benefits brought by the projects

¹⁸ This analysis is the result of an assessment performed by INTENSYS4EU team based on the information provided by each project.

PART 2 – OVERVIEW OF PROJECTS' KEY EXPLOITABLE RESULTS (KER)

Within the monitoring survey, project representatives have been asked to identify up to 5 project's results which are the most promising for exploitation (Key Exploitable Results or KER). A total of 281 KER's have been identified by project coordinators.


In this part, some descriptive features of projects' KER are presented as well as projective features i.e. further steps and barriers foreseen before the effective KER exploitation.

DESCRIPTIVE FEATURES OF PROJECTS' KEY EXPLOITABLE RESULTS

Number of Key Exploitable Resultsper project

As illustrated by Figure 10, the 121 projects having participated in the survey, have declared the following number of KER:

- 60 projects have declared to have one KER (50% of the total number of projects);
- 15 projects have declared to have 2 KER;
- 14 projects have declared to have 3 KER;
- 11 projects have declared to have 4 KER;
- And 21 projects have declared to have 5 KER¹⁹.

Figure 10. Number of KER by project

The projects declaring 5 KER are mainly FP7 & H2020 projects (80%) when the ones with only one KER are mainly other projects (82%).²⁰

A total of **281 different KER** are taken into account in this report, which is considered to be a sufficient sample to develop different tendencies and analyses based on the projects' inputs.

¹⁹ Within the survey, projects were asked to declare up to 5 KER maximum.

²⁰ "Other projects" are in general nationally or regionally funded. These projects might also benefit from EU funds, for instance from CEF, LIFE, ERDF or ERA-Net.

Nature of Key Exploitable Results

Different natures of results have been defined:

- Methodology: methodologies for designing new rules, energy scenarios, etc;
- **Software**: development or demonstration of simulation tools, decision making support tools, etc.;
- Hardware: development or demonstration of pieces of hardware;
- Database: quantified scenarios, results of cost-benefit analyses, etc.;
- Policy, Regulation, Market: business models, policy recommendations, etc.

As shown by Figure 11, the dominant category of the KER declared by the projects corresponds to software tools, followed by methodologies and hardware tools. A significant number of KER are also corresponding to policy, regulation or market recommendations. Only a few correspond to a database.

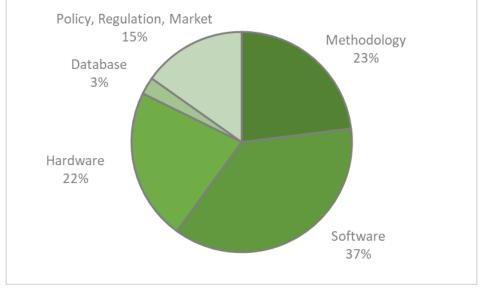
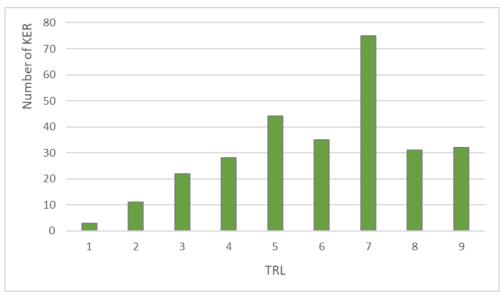


Figure 11. Nature of KER



Output Technology Readiness Level (TRL) of Key Exploitable Results

KER have also been analysed depending on their output TRL:

- TRL 1: basic principles observed;
- TRL 2: technology concept formulated;
- TRL 3: experimental proof of concept;
- TRL 4: technology validated in lab;
- TRL 5: technology validated in relevant environment (industrially relevant environment in the case of key enabling technologies);
- TRL 6: technology demonstrated in relevant environment (industrially relevant environment in the case of key enabling technologies);
- TRL 7: system prototype demonstration in operational environment;
- TRL 8: system complete and qualified;
- TRL 9: actual system proven in operational environment (competitive manufacturing in the case of key enabling technologies).

Figure 12 shows the distribution of KER by their TRL level.

Figure 12. TRL level of KER

The largest number of KER considered in the study have an output TRL 7 (75 KER). Then, around 45 KER have an output TRL 5. The same order of magnitude of KER (around 30 each) are identified with output TRL 4, 6, 8 and 9. Finally, around 40 KER remain with an output TRL 3 or below.

Cross-checking the nature of KER (from previous section) with the output TRL shows that software and hardware tools are the majority within high TRL ranges compared to other types of KER (especially methodologies and policy, regulation or market recommendations).

PROJECTIVE FEATURES OF KEY EXPLOITABLE RESULTS

Expected effective use of Key Exploitable Results

Different (non-exclusive) categories have been defined related to the expected effective use of KER:

- Internal use i.e. by one project consortium partners;
- Collective use i.e. jointly by several project consortium partners;
- Open use (e.g. open source, open data, open access, public domain);
- Commercial use;
- Integration within an educational program.

Figure 13 shows the allocation of the expected effective use for the KER studied.

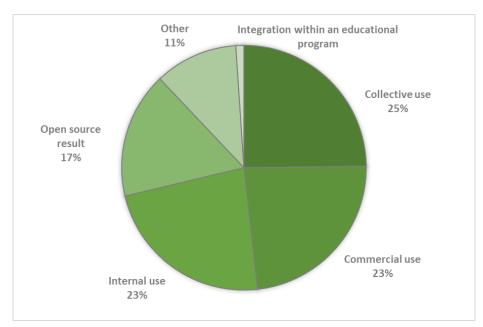


Figure 13. Expected effective use of KER

Next project steps for the exploitation of Key Exploitable Results

Additional next steps necessary towards effective use of results have been provided by the projects. They are gathered within 3 main categories:

- Next steps internal to project consortium: such as further testing, further demonstration, internal deployment, etc.;
- Next steps involving external stakeholders: such as external certification, external dissemination, etc.;
- Next steps involving changes in existing framework: such as regulation, market, etc.

As shown by Figure 14, two thirds of the KER considered have next steps internal to project consortium. Focusing on KER with output TRL 9, it appears that this figure drops at 43%.

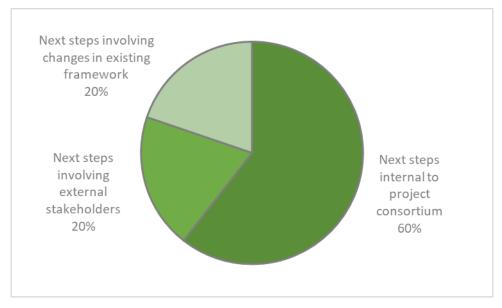


Figure 14. Next steps towards the effective exploitation of KER

Time to exploitation of Key Exploitable Results

"Time to exploitation" includes "time-to-market" for commercial products, and "time to operational use" for non-commercial results (for instance innovations developed within regulated frameworks).

Different timelines have been defined so as to evaluate the time to exploitation for the different KER:

- The KER is already exploited;
- KER exploitation is going to start immediatly;
- KER exploitation will start within less than 2 years;
- KER exploitation will start within less than 5 years;
- KER exploitation will start within less than 10 years;
- KER exploitation will start within more than 10 years;
- time to exploitation is uncertain, it depends on non-controllable conditions.

As shown by Figure 15, most KER are expected to be exploited in less than 2 years (117 KER) or in less that 5 years (99 KER).

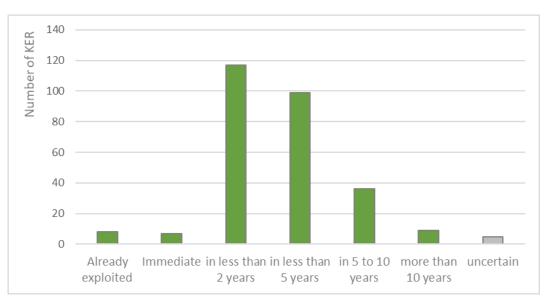


Figure 15. Time to exploitation of KER

Focusing on KER with output TRL 9, it appears that 20% of these will need more than 2 years to be effectively exploited: they mainly correspond to hardware.

Barriers to exploitation of Key Exploitable Results

Projects have been questioned about barriers to KER exploitation. Different barriers have been considered for the analysis:

- Inadequate regulations;
- Inadequate market conditions;
- Difficulties in scaling-up;
- Further investments needed.

Figure 16 illustrates the main barriers identified to KER exploitation.

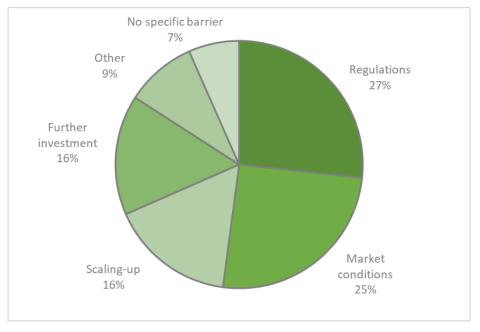


Figure 16. Barriers to exploitation

One quarter of the barriers indicated by the projects are related to **regulatory environment** and another quarter of the barriers are related to **market conditions**. Then, equally displayed, **scaling up** and **further investments** barriers are indicated. The "other" field corresponds for instance to barriers related to:

- Flexibility in power generation not being valued enough;
- Very complex technical processes or specific technologies.

For 7% of KER, no specific barriers have been identified for the exploitation of results.

Focusing on output TRL 9, the main barriers are related to regulations and market conditions.

Investment needed before exploitation of Key Exploitable Results

Regarding the additional investment that might be needed before effective exploitation of KER, projects have been asked to provide the range of such investment, as illustrated by Figure 17.

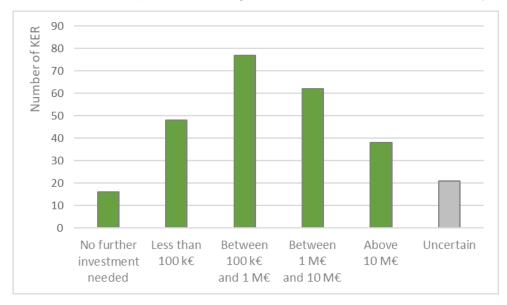


Figure 17. Investment needed before exploitation of KER

Most KER need a significant investment before achieving exploitation.

Even KER with output TRL 9 need significant additional investment before effective exploitation. More than one third of KER with TRL 9 even need an additional investment of 1 $M \in$ or more. This is consistent with the previous observation about hardware and software tools being the majority within TRL 9 KER: investment in hardware and software development is in general higher than in methodologies or policy research.

PART 3 – INDIVIDUAL PROJECT SHEETS

In this part, individual sheets are presented for each of the 121 projects having participated in the survey.

First, FP7 and H2020 projects are presented in alphabetical order; these projects sheets have a blue headline as follows:

FP7 & H2020 PROJECTS

Then, other projects are ordered according to the country of the coordinating organisation, and are presented with the following yellow banner:

OTHER PROJECTS

Within each project sheet, the following information is presented:

- Project acronym, long name (if relevant) and logo (if existing),
- A box explaining the project's main objective,
- A table presenting:
 - The project's start and end years;
 - The project's total costs;
 - The project website;
 - The country of the coordinating organisation;
 - The name of the coordinating organisation;
- Another table presenting:
 - o The type of technologies and/or services tackled by the project:

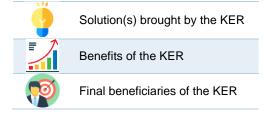
Technologies for consumers, especially to enable demand response;

Grid technologies, including hardware and software solutions to improve network management;

Storage and Power-to-X technologies, connected at transmission or distribution level;

POWER GENERATION MARKET

CONSUMERS


GRID

STORAGE & POWER-TO-X

> **Power generation technologies**, including dispatchable and nondispatchable technologies of all sizes;

Market: electricity market and ancillary services.

- The number of partners and number of countries involved;
- A last table presenting for projects' Key Exploitable Results (KER):

ANYPLACE

Adaptable Platform for Active Services Exchange

Any PLACE Development of a modular energy management system capable of monitoring and controlling local devices according to the preferences of end-users

		•					
Years	Project total cos	t Website		Coordin	ator's country		Coordinator
2015-201	7 3 M€	http://www.anyplace	e2020.org/	P	ortugal		INESC TEC
	Types of technologies	and services tackled		Pa	artners	Cou	ntries involved
	CONSUMERS GRID STORAG POWER-				8		4
KER	AnyPLACE Energy Management Platform	Smart Meter (SM) Integration	Water	Electric Heating ution	Energy Optimizatio Software		Community participation in energy management
(Automated energy management solution	Capability of creating SMs compatible with Home Energy Management System (HEMS)	Creation a commerci of smart t appliance	alization hermal	Energy modelli and optimized management fo households and buildings	or	Community participation in energy management
	Better energy management in a household	Development of lines of SMs compatible with HEMS	New sma compliant stricter en efficiency	with ergy	Minimisation of electricity bill a maximisation o integration of lo generation (e.g	nd/or f ocal	Increase of energy efficiency in small communities
	User, customer	User, customer,	User, cus	tomer,	User, customer	,	User, customer

ARROWHEAD

Efficiency and flexibility at the global scale by means of collaborative automation for five applications: production (manufacturing, process, energy), smart buildings and infrastructures, electro-mobility and virtual market of energy

retailer

retailer

retailer and DSO

Years	Project total cost	Website	Coordinator's country	Coordinator
2013-2017	65 M€	http://www.arrowhead.eu	Sweden	LULEA TEKNISKA UNIVERSITET
Турез	of technologies a	nd services tackled	Partners	Countries involved
	CONSUMER	s	>70	15
KER	Arrowhead Frame	work: for engineering and imple solutions based on stan	5	and automation
9	Reduced engineeri solution.	ng efforts for the design and imple	mentation of the digitalisatior	and automation
= 1	Improvements and	guarantees regarding: Real time of		m security,

Automation system engineering, Scalability of automation systems. Reduction of 75 % or more, in the design and engineering efforts for the predicted multi-billion networked devices.

Value chain of players in the digitalisation and automation business.

CRYOHUB

Developing Cryogenic Energy Storage at Refrigerated Warehouses as an Interactive Hub to Integrate Renewable Energy in Industrial Food Refrigeration and to Enhance Power Grid Sustainability

Investigation and extension of the potential of large-scale Cryogenic Energy Storage (CES) and application of the stored energy for both cooling and energy generation

Years	Project total cost	Website	Coordinator's country	Coordinator
2016-2019	8.3 M€	http://www.cryohub.eu/	UK	London south bank university lbg
Types o	f technologies and	I services tackled	Partners	Countries involved

STORAGE & POWER-TO-X	14
KER	CryoHub demonstrator of the LAES system at a refrigerated warehouse/food production facility
9	Integration of Renewable Energy Sources into grid
	Greater use of RES
(19)	Grid operators, Equipment suppliers

DREAM

Distributed Renewable resources Exploitation in electric grids through Advanced heterarchical Management

Ι

💊 Dream

Two aspects considered within the project: a stable and cost-effective integration of distributed renewable energy sources in existing networks, and more involvement of end-users eager to rationalise their energy use from an economic and ecological point of view

Years	Project total cost	Website	Coordinator's country	Coordinator
2013-2016	5.8 M€	https://cordis.europa.eu/pr oject/rcn/109909_en.html	France	Institut Polytechnique de Grenoble
Types of t	echnologies an	d services tackled	Partners	Countries involved

	CONSUMERS MARKET	15	7
KER	Distributed Market Driven Environments	New Distributed Balancing Markets	Novel Grid contingency management system
9	Hardware and software modules for: Energy Market Analysis, Key Drivers for intelligent use of Energy, Economic and Business Modelling, Simulation Model for What If Analysis user and producer behaviour	Development of behavioural profiling methods, Integration of grid entities and design of possible aggregated operational configuration mechanisms	Analysis, Methods, Models, Algorithms, Environment requirements and specifications for Grid contingency management.
	Industrial and business application development	Industrial and business application development	Practical investigations in field tests Contribution to political discussions about future adaptations of grid codes
	All energy system stakeholders, soci	ety	

Partners

. .

BADGE

Countries involved

5

Elsa

FP7 & H2020 PROJECTS

EBADGE

Development of Novel ICT tools for integrated Balancing Market Enabling Aggregated Demand Response and Distributed Generation Capacity

Optimal pan-European Intelligent Balancing mechanism, piloted on the borders of Austria, Italy and Slovenia, able to integrate Virtual Power Plant Systems that can assist in the management of the power Transmission & Distribution grids in an optimized, controlled and secure manner

Ye	ears	Project total cost	Website	Coordinator's country	Coordinator
2012	2-2015	4.9 M€	http://www.ebadge-fp7.eu/	Slovenia	TELEKOM SLOVENIJE

Types of technologies and services tackled

GRID	14
KER	Balancing market simulator
Ÿ	Lowering the price of electricity exchange
	More flexibility, less power loss
1	Whole ecosystem

ELSA

Energy Local Storage Advanced system

Adaption and integration of close-to-mature storage technologies and related ICT-based EMS for management and control of local loads, generation and (single or aggregated) real or virtual storage resources in buildings, districts and distribution grids

Year	rs	Project total cost	Website	Coordinator's country	Coordina	Coordinator	
2015-2	2015-2018 13.1 M€		http://www.elsa-h2020.eu	France	Bouygues En Service	0	
	Types of t	technologies and s	ervices tackled	Partners	Countries in	volved	
	CONSU	MERS STORAGE & POWER POWER-TO-X GENERATIC		10	5		
	KER	Industrial S	torage using second-life EV batteries	Recommendation for regulation changes			
	Delay the recyclir providing a secor		ycling of EV batteries econd use	Change in regulation will al use of storage	low a wider		
	■ /	batteries. Stal	age compared to new bilizing the grid locally. S penetration and self	Services profitable for the customers and for the grid.			
	P	User and grid	(DSO)	EV Owner, user and grid (E	DSO)		

EMPOWER

Local Electricity Retail Markets for Prosumer Smart Grid Power

Services

Facilitation of micro-generation and active participation of prosumers to exploit the flexibility created for the benefit of all connected to the local grid

					0			
Ye	ears	Project tota cost	Website		Coordinator	or's country C		Coordinator
2015	5-2017	6.1 M€ <u>http://empowerh2020.eu/</u> Norway Schneid		der Electric Norge AS				
	Types of	technologies	s and services tackle	ed	Partne	rs	Cour	ntries involved
	CONSUMERS	GRID STOR	AGE & POWER R-TO-X GENERATION MARKET		14			5
KER	EMPO platfe	WER 7	ustomized version of the EMPOWER platform	ager	WER multi- nt system MAS)	loT for sm	art grids	Forecasting system
`	Provides a platform for electricity between neighbour	or local of trading pla pu	ustomized version the EMPOWER atform for German blic utility market & ordic retailer market	loads a microgr	ng multiple nd feeds in a	Creating an supporting a energy com for different manageme purposes	a local munity energy	System for forecasting loads, feeds and congestion problems
	Increased of DER in local grid. Increased flexibility a distributed	to the DI gr fle at dis	creased feed-in of ER into the local id. Increased xibility at stributed levels	DER int grid, inc security	ed feed-in of to the local creased of supply customers	Support of a energy com for different manageme purposes	nmunity energy	Improves the DSO's ability to forecast loads, feeds and congestion problems in a more precise way
Ø	The end c in the ene system	ustomer Th	e end customer in e energy system	The loca municip Hvaler a		The end cu in the energy system		The local DSOs and their customers

inhabitants

ETIP SNET EUROPEAN SMART

TECHNOLOGY AND INNOVATION PLATFORM SMART NETWORKS FOR ENERGY TRANSITION

EU-SYSFLEX

Pan-European system with an efficient coordinated use of flexibilities for the integration of a large share of RES

EUSysFlex

Demonstration that an efficient and sufficient level of system services are provided to help facilitate world leading levels of RES -E while maintaining the level of resilience that consumers and society expect from the European electricity system

	Years	Project total cost	Website	Coordinator's country	Coordinator	
20	17-2021	26.5 M€	http://eu-sysflex.com/	Ireland	EirGrid	
	Types of	f technologies an	d services tackled	Partners	Countries involved	
	CONSUMERS	GRID STORAGE & POWER-TO-X	POWER GENERATION MARKET	34	15	
KER		e the technical the EU system	Recommendations for enhancing the market and regulation framework	Demonstration of the canability to provid		
Ŷ	2030 (commo generation, gr	id, dynamics): es of the future tem, and of emerging	Mitigation of the technical shortfalls faced in a high RES system and at different stages of its evolution. Three different market modelling approaches providing recommendations on effective market structures for flexible future systems.	Demonstrations of six new systems operators Development and testing of facilitate the TSO/DSO into border exchanges Trial of four innovative rea automation systems to ens sources can be activated i timely fashion Demonstrations in multiple the methods and results Portfolio optimization tools the reliable dispatch of mur resources	of eight new ICT tools to eractions and cross I time control and sure that the flexibility n an accurate and EU states to ensure to support trading and	
	Strengthen the beneficiaries t future system, challenges an	o study the identify d solutions	Effective procurement of flexibility services Reduced costs and increased use of renewable generation	Increase the flexibility of the costs. Increase use of rem		
5	TSOs, techno academia	logy providers,	TSOs and end-users	TSOs and end-users		

KER

Tools and procedures for transition from system Development of a flexibility roadmap services to the massive integration of RES Development of a decision support tool to simulate real Quantification of the effectiveness of the solutions to time operations for testing the compatibility of system address technical shortfalls using indicators: stability, services: realistic model of the detailed operation of the capability for frequency and voltage regulation, ramping Polish and German systems (and neighbours) and balancing, RES curtailment, network congestion and system costs, RES curtailment, technology Development of a single, formalized procedure for revenue performing qualification trials for the procurement, integration and monitoring of new services and Reliability models for three new services technologies Provision of an order of magnitude estimate of the volumes (as a function of costs) that solutions can reach if barriers to scalability and replicability are removed (including ICT and data issues) Support TSOs with the transition from system services Remove and overcome the technical, regulatory, to the massive integration of RES. Reduce costs and communication or system operator issues. Reduce increase use of renewable generation costs and increase use of renewable generation TSOs and end-users TSOs and end-users

FLEXCOOP

Democratizing energy markets through the introduction of innovative flexibility-based demand response tools and novel business and market models for energy cooperatives

Introduction of an end-to-end Automated Demand Response Optimization Framework allowing energy cooperatives to introduce themselves in energy markets under the role of an aggregator. Equipment of cooperatives with innovative and highly effective tools for the establishment of robust business practices to exploit their microgrids and dynamic VPPs

Years	rs Project total cost Website		Coordinator's country	Coordinator	
2017-2020	4 M€	http://www.flexcoop.eu/	Germany	Fraunhofer	
Types of technologies and services tackled		Partners	Countries involved		
CONSUMERS			14	10	
KER FLEXCoop OSB Smart Home Sensing ar Device			d Control HYPER	TECH's Visual Analytics Platform	
	Home gateway (C EU standards	DNEM2M Gateway) compli	ant with Flexibility Fore and Clustering	ecasting, Segmentation, Classification g Module	
	Comfort and ener	gy savings	Enhanced and services to cu	alytics: energy savings and customized istomers	
1	Customer		Customer		

FLEXICIENCY

Energy services demonstrations of demand response, FLEXibility and energy effICIENCY based on metering data

On the basis of a technical model reflecting a common framework for data exchange at EU level, demonstration of novel energy services in the electricity retail markets, accelerated via an open EU Market Place for B2B interactions developed in the project

Years	Project total cost	Website		Coordinator's country		Coordinator's country Coord		Coordinator
2015-2019	19.1 M€	www.flexiciency-h2	<u>020.eu/</u>	Italy		E-DISTRIBUZIONE SPA		
Туре	s of technologie	es and services tack	ded	Partners		Countries involved		
	CONSUMERS	STORAGE & MARKET		18		10		
KER	EU Ma	rket Place		ta modelling and ission protocol based on CIM	Ad	lvanced services based on data exchanged		
`	To catalyze the between the rel of the electric s	evant stakeholders	extended	dard adapted and I and requirements for ication at B2B level	local	nced monitoring services, energy control and flexibility ces, based on data exchange		
		lardized oss-country & cross- o data and services	Standard facilitatio	lization: data exchange n	inforr	er quality and quantiy of mation; active participation for ner in the energy market		
	Energy market	players	B2B play	ers	Final	customers		

FLEXITRANSTORE

An Integrated Platform for Increased FLEXIbility in smart TRANSmission grids with STORage Entities and large penetration of Renewable Energy Sources

Development of the next generation Flexible Energy Grid (FEG), which will provide the technical basis supporting the valorisation of flexibility services and enhancing the existing European Internal Energy Market (IEM)

Years		Project cos		We	ebsite	Coord	dinator's country	Coordinator
2017-2021		21.7	M€	www.flex	itranstore.eu	Belgium		European Dynamics Belgium S.A.
Туре	s of te	chnologie	s and se	rvices tacl	kled		Partners	Countries involved
CONSU	JMERS	GRID STOI	RAGE & PO JER-TO-X GENER	WER RATION MARKI	ET		27	12
KER		torage ration	FACTS for con rel		Market pl	atform	Flexible and stable conventional generation	Demand side flexibility at the TSO-DSO border
	Mitigate volatilit towards "near- dispatc nature	y sa	Relieve congesti exploit re grid capa	emaining	Demonstratio elaborated m platform that remunerates services throu wholesale ma	arket flexibility ugh the	Solutions tailored for GT plants to improve stability from low frequency oscillations and provide several services: frequency response capacity, black-start	Controllers and battery storage situated at the TSO-DSO border
-	Less vo and ba service	lancing	Increase penetrati cross-bo trading, o new infrastruc investme	on and arder defer cture	Incentives for flexibility serv stakeholders, to suppliers a producers by remuneration investments	ices by liquidity nd flexibility	More flexibility resources for higher RES penetration, reliability and quality of supply	Increase the available flexibility resources
	User, T Custon (more o energy)	ner clean	TSO, DS	0	User, Market, Stakeholders		Producers, TSOs, Customers	TSOs, DSOs

lexturbine

FP7 & H2020 PROJECTS

FLEXTURBINE

Flexible Fossil Power Plants for the Future Energy Market through new and advanced Turbine Technologies

Development of a technology roadmap consisting in: new solutions for extended operating ranges to predict and control flutter, improved sealing and bearing designs to increase turbine lifetime and efficiency by reducing degradation/damages, improved lifecycle management through better control and prediction of critical parts to improve competitive costs by more flexible service intervals and planned downtime, and by reducing unplanned outages

Years Project total cost		Website Coo		ator's country	Coordinator DOOSAN SKODA POWER SRO	
2016-2018 10.6 M€ http://			http://www.flexturbine.ee	www.flexturbine.eu/ Czech		
7	ypes of	technologies and s	services tackled	Р	artners	Countries involve
		POWER GENERATION			24	7
KER	Flutter	resistant turbine b design	lade Innovative seal design for sto turbi	eam and gas	Improved life	cycle management
Ŷ	Improvement of the capability to predict the occurrence of flutter			allow robust	Improvement of the test result database, better mathematical models, accurate prediction of transient temperature fields, and effect on stresses	
	Prevent risk of failure in the machinery and the corresponding outages		efficiencies by 0.5 of wear in key loc 80 % and life cycl	hes by 0.5 %. Reduction intervals in n key locations by up to d life cycle cost outages an ng service intervals by Reduction		s between service sed by 30% to 50%. grid stability with less s stand-still. ests of operation and energy production.
?		achinery OEM, pow perators, DSOs	er Turbomachinery (Suppliers, power DSOs	'	Turbomachiner plant operators	

ETIP SNET

EUROPEAN TECHNOLOGY AND INNOVATION PLATFORM SMART NETWORKS FOR ENERGY TRANSITION

12

FP7 & H2020 PROJECTS

FUTUREFLOW

Designing eTrading Solutions for Electricity Balancing and Redispatching in Europe

8

Design and pilot testing of comprehensive techno-economic models for open and nondiscriminatory access of advanced consumers and distributed generators to a regional platform for ancillary/balancing and redispatching services

Years	Years Project total cost Website Coordinator		Coordinator's country	Coordinator
2016-2019	13 M€	http://www.futureflow.eu/	Slovenia	ELES
Types of te	chnologies and serv	Partners	Countries involved	

KER	Definition of power consumers and DER owners that can become secondary reserve (aFFR) market providers	Techno-economic model to optimize coupling of secondary reserve (aFRR) markets	Cyber secure Flexibility Aggregation Platform and Regional Balancing and redispatching cross-border platform	Deployment roadmap for most promising use cases for cross-border exchange of aFRR with DR and DER
\	To convince all market players and regulators about the soundness of the technical and market design approach about aFFR market providers.	Increase balancing market liquidity, reducing costs of RES integration and security of supply, with accommodation of massive intermittent generation.	To reduce the gap in electricity end-uses prices for industry vis-à- vis the EU major trading partners	To describe how integrated balancing markets work and what can be anticipated with its expansion from 4 countries to EU wide.
	Higher social welfare for society, increased competition, lower CO2 emissions.	Higher social welfare for society, increased competition, lower CO2 emissions.	Restoring and maintaining the competitiveness of the EU energy-intensive industries.	To expand all benefits of an integrated market highlighted by the project to EU wide framework.
P	Customer, TSO, aggregator, regulator	Customer, TSO, aggregator, regulator	Customer, TSO, aggregator, regulator	Final user, DSO, TSO

ETIP SNET

TECHNOLOGY AND INNOVATION PLATFORM SMART NETWORKS FOR ENERGY TRANSITION

GOFLEX

GRIDS

5

FP7 & H2020 PROJECTS

GOFLEX

Generalized Operational FLEXibility for

Integrating Renewables in the Distribution Grid

Innovation, integration, and demonstration of a group of electricity smart-grid technologies for managing flexibility in energy production and consumption

Years	Project total Website cost		Coordinator's country	Coordinator	
2016-2019	11.2 M€	http://www.goflex-project.eu/	Ireland	IBM IRELAND LIMITED	
Types	Countries involved				
CONSUMERS GRID STORAGE & POWER-TO-X MARKET			12	6	
	KER Energy flexibility management system				
	An integrated system, applicable to small, medium and large prosumers, for the automatic management of energy flexibility			ers,	
	15% increase in electricity load adaptability. Prosumers' flexibility; deferring grid investments and reducing balancing costs				
	Pros	umers, utilities			

GRIDSOL

GRID

Smart Renewable Hubs for flexible generation: Solar Grid Stability

Provision of secure, clean and efficient electricity by combining primary renewable energy sources and technology under an advanced control system called Dynamic Output Manager of Energy (DOME) supplying secure electricity and contributing to grid stability

Years	Project total cost	Website	Coordinator's country Coordinato	
2016-2019	3.4 M€	http://www.gridsolproject.eu	Spain	Cobra Instalaciones Y Servicios
Types of tech	nologies and se	rvices tackled	Partners	Countries involved

10

STORAGE & POWER POWER-TO-X GENERATION MARKET

KER	Smart Renewable Hubs	Dynamic Output Manager of Energy	CSP Multi-tower concept	New business models for Hybrid RES Dispatchable plants	Integration of storage in existing plants
9	To deliver fully dispatchable RES power plants	To ensure optimal techno- economic dispatch among generators and storage systems	To reduce cost/benefit ratio of Concentrated Solar Power technology	To identify new business opportunities, with profitable hybrid RES & Storage units	Flexible generation
	Reduction of power generation, system costs and CO ₂ , increase of RES and competitiveness, market uptake of new storage technologies	Increase RES and their controllability on generation side, improve power network planning and operation, reduce RES curtailment	To increase the competitiveness of Concentrated Solar Power technology, to facilitate RES integration	Market uptake of RES and storage technologies	Reduction of generation costs, reduction of the customer energy bill
?	Generator, Independent Power Producer, Utility, Prosumer		Generator, Power Producer, Power Plant Owner, Project developer	Project Developer, Generator, Utility	Generator, ecosystem

H2FUTURE

Hydrogen meeting Future needs of low carbon manufacturing value chains

Generation of green hydrogen from electricity from renewable sources. Support by the Austrian TSO APG of the prequalification of the electrolyser system for the provision of ancillary services

Years	Project total cost	Website	Coordinator's country	Coordinator
2017-2021	17.8 M€	https://www.h2future-project.eu/	Austria	VERBUND
Types o	f technologies an	d services tackled	Partners	Countries involved
	STORAGE & MA	IRKET	6	3
	KER Integra	tion of state-of-the-art PEM elect	rolyzer technology combine	ed with

Integration of state-of-the-art PEM electrolyzer technology combined with grid services into the steel manufacturing process

Storage of electric energy with hydrogen as energy carrier.

Scalable power/energy shifting possibilities. Higher liquidity of the national balancing market. Multisectoral aproach. Power and energy intensive steel industry provides "storage" functions to the electricity system. Reduction of CO_2 -emissions of steel manufacturing industry.

Steel industry. Transmission System Operator. Electricity supplier. End user.

IDISTRIBUTEDPV

Solar PV on the Distribution Grid: Smart Integrated Solutions of Distributed Generation based on Solar PV,

Energy Storage Devices and Active Demand Management

Development of affordable integrated solutions to enhance the penetration of distributed solar PV (buildings)

Years	Project total cost	2 Website		Coordinator's country	Coordinator	
2017-2020	2017-2020 2.7 M€ http://www.idistributedpv.eu/			Spain	APPA	
Types of technologies and services tackled				Partners	Countries involved	
		FORAGE & POWER GENERATION MARKET		12	6	
KER	ER Solutions for large penetration of distributed solar PV		Prosumer player			
9	Solutions for large penetration of distributed solar PV based on real operational conditions and real EU distribution networks		Approaches about the role of the different players in the penetration of distributed solar PV: prosumers, solar PV promoters, load aggregators, DSOs, integration with the electricity system, etc.		plar PV: prosumers, gators, DSOs,	
	Higher penetration of solar energy		Sustainable electricity at lower price Opportunity to sell the excess of the production to third parties		price	
(19)	Policy makers, tech standardization boo	nnology manufacturers, dies, society	Pro	sumers, society		

INTEGRIDY

Integrated Smart GRID Cross-Functional Solutions for Optimized Synergetic Energy Distribution, Utilization Storage Technologies

Facilitating the optimal and dynamic operation of the Distribution Grid, fostering the stability of the electricity grid and coordination of distributed energy resources, Virtual Power Plants and innovative collaborative storage schemes within a continuously increased share of renewable energy

Years	Project total cost	Website	Coordinator's country	Coordinator
2017-2020	15.8 M€	http://integridy.eu/	Spain	ATOS SPAIN SA
Types of tech	Types of technologies and services tackled			Countries involved
CONSUMERS		WER IRATION MARKET	30	6

KER	MV Distribution Networks Management tool	Multi-carrier hub Optimisation engine	Heat pump control hub	Kisense Energy Management System	Intelligent Building Control & Flexibility Prediction- Forecasting Tool
	To support DSO in operating the grid, in scenarios with great penetration of Dispersed Generation	To provide flexibility services to the DSO responsible of the Medium Voltage (MV) line which the micro-grid is connected to	To integrate a network of PV, solar thermal, heat pump, immersion heaters, thermal storage, and electrical storage into a single entity	To deliver state-of-the-art Demand Response technology, integrating energy measurements (such as electrical and thermal) and environmental data (such as temperature and humidity) analysis and providing information regarding past and real- time information	Identification and automated optimal management of a building's assets, based on their forecasted energy flexibility, allowing active Demand Response schemes to be applied.
	Preliminary results: Energy losses in the MV distribution grid improved up to 20% and hosting capacity limits for 10%. Benefit in the overall management of the electric grid: maximization of the system reliability and a reduction of the energy costs. New business opportunity will arise for all the users of the electric grid	Economic advantage from the optimisation. To monitor and control the available DER in order to properly evaluate and satisfy the local electric and thermal needs. Low maintenance expenses for DSOs thanks to the increase of flexibility services offer	Job creation. Reduction of energy costs for residents (around £500 per annum). Each system saves 4000kg CO ₂ per annum in 3 residential properties. (Installing the system in 5000 properties results in savings of 6500 tonnes CO ₂ per annum).	Improve interoperability with third party systems, reducing future implementation costs and enhance market access of proposed VPS solutions. Cost reduction; enhancement of competitivity of DR tool; Increase feeling of social belonging with sharing benefits mechanisms; Increase of renewables and energy efficiency; Research on energy optimisation and innovative energy business models; Integration failure reduction with third party systems.	Exploitation of energy more efficiently and economically
?	DSOs and final users	Micro-grid Energy Managers, DSOs	Final users	Microgrid members/ owner, the building owners or a DSO	Building / Facility Manager. Energy Utility company / Retailers, utilizing DR services

Internex

FP7 & H2020 PROJECTS

INTERFLEX

Interactions between automated energy systems and Flexibilities brought by energy market players

Investigation of the INTERactions between FLEXibilities provided by energy market players and the distribution grid. This project focuses on energy storage, smart charging of electric vehicles, demand response, islanding, grid automation and integration of different energy carriers

	Years	Project total cost	Webs	site	Co	ordinator's country	Coordinator
2	017-2019	22.8 M€	http://interflex-	h2020.com/	France		ENEDIS
	Types of technologies and services tackled Partners						Countries involved
	CONSUMERS	GRID STORAGI POWER-TI	E & MARKET			20	6
KER	Enhanced DS aggregato platforms (a related interf	O and busi ors for ba and incl	Ilti-services iness models attery storage, uding use of EVSE	Recommer ns for grid evolutic allowing f increase ir hosting ca	l code ons or an n DER	New business models for optimization of DSO operation by exploiting the interaction with district heating, district cooling, micro-CHP or other multi-energy devices	Recommendations and market organisation on running a planned and automated islanded mode
?	To provide inno energy services all the players i energy market: simultaneously flexibilities from multiple source trade them loca a "Local flexibil market", and to control them re (for instance th the German de "Smart Grid Hu	s for and la n the batter to use relieve conge increa s, to renew ally on capac ity motely rough mo	t residential rger, shared y systems to e network stion, and se the able hosting ity of the grid.	To increase hosting cap thanks to us volt-var com V/Q or to us the Q(U) an characterist smart invert	acity sing trol sing id P(U) ics of	To exploit untapped potentials for flexibility provision: flexible use of hybrid heating systems that can run on both electricity and gas and exploitation of termal inertia and the interaction between thermal and electricity grids.	Recommendations for the grid codes on the observability and management of microgrids: required technologies and sensors, communication infrastructure and role description, contractual relationships for market organisation.
	Overcome the common marke barriers. Enhar observability, lo energy control, flexibility servic	et securi liced distrib local observiced conge es. while t	orce system ty, improve the ution grid vability, solve stion problems, taking into nt the need of ers.	Increase DE hosting cap- in LV netwo without the of expenses new interconnec and reconstructi	acity rks need s for tions	Additional power flexibility provision, conversion of excess renewable power into heat, use of thermal inertia as a significant and cost-efficient source of flexibility.	Improvement of the security of supply for customers; enabling the community to support the use of the renewable energy via automated control of their residential assets.
?	DSOs, agregat	EV ch operat	, Aggregators, arging stations tors, battery e owners.	DSOs, Batte storage ope		DSOs, Local Energy Supply Companies, aggregators, Residential and commercial customers	DSOs, Local Energy Supply Companies, aggregators

6

FP7 & H2020 PROJECTS

INTERPLAN

INTEgrated opeRation PLAnning tool towards the Pan-European Network

5

MIGRATE

Provision of an INTEgrated opeRation PLANning tool towards the pan-European network, to support the EU in reaching the expected low-carbon targets, while maintaining network security

Years	Project total cost	Website	Coordinator's country	Coordinator	
2017-2020	3 M€	http://interplan-project.eu/	Italy	ENEA	
Types of technologies and services tackled			Partners	Countries involved	

Types of technologies and services tackled

CONSUMERS

GRID

KER	Integrated operation planning tool for the pan-European network	Grid equivalenting	Integrated control system logics
`	To provide an operation planning tool for grid equivalents, based on semi-dynamic simulations	Significantly reduce the complexity of investigations on distribution grid, by using appropriate grid equivalents	To adapt the control logics to the complexity of the integrated grid and to address stability and security at area, regional and pa European level
	Achieving security in a low- carbon electricity system and ensuring that the future pan- European grid can host large quantity of RES and allow flexibility in the presence of DER	Providing a validated set of grid equivalents accessible by the public and helping DSOs to identify the optimal standard parametrization of small-scale DER	Increase of network observability and advances in managing all relevant flexibility resources as "local active elements" within the grid"
Ø	TSO, DSO, regulator, network operator	DSO, customer, aggregator, balance Responsible Party BRP	DSO, TSO, network operator

MIGRATE

Massive InteGRATion of power Electronic devices

Development and validation of innovative, technology-based solutions in view of managing the pan-European electricity system experiencing a proliferation of Power Electronics (PE) devices involved in connecting generation and consumption sites

Years	Project total cost	Website	Coordinator's country	Coordinator
2016-2019	17.9 M€	https://www.h2020-migrate.eu/	Germany	TennetTSO GMBH
Types of technologies and services tackled			Partners	Countries involved
	GF	ID	24	11

KER	PE Penetration in power system
ÿ	Security of Supply due to PE penetration through RES
	Stable electricity grid and no black-outs
(19)	European Society

NAIADES

Na-Ion bAttery Demonstration for Electric Storage

Development and demonstration of the ambient Na-ion battery under realistic conditions as an effective alternative to the Li-ion battery for stationary Electric Energy Storage (EES) application

Years		Project total cost	Website		Coordinator	s country	Coordinator
2015-2018	1	6.5 M€	<u>http</u>	http://www.naiades.eu/		ce	CEA
Types of technologies and services tackled			Partne	rs	Countries involved		
		STORAGE & POWER-TO-X			10		6
KER	Development of electrode materials for Na-ion batteries		Scale up of positive material synthesis		Development of Na-ion Cells		
9	ma	provide new types terial: a polyanion hode and a layere	ic	To produce 50 kg bat materials	ches of cathode	•	le the first large I cells of 8 Ah
		ter properties than tery	n Li-ion	Good electrochemica	l performances	High pow	er and fast charging
?	Bat	ttery manufacturer	S	Battery manufacturers	S	Users	

EUROPEAN TECHNOLOGY AND INNOVATION EUROPEAN TECHNOLOGY AND INNOVATION ENERGY

TRANSITION

PLAN. INNOVATE. ENGAGE.

PLATFORM

NETFFICIENT

Energy and economic efficiency for today's smart communities through integrated multi storage technologies

Deployment and demonstration of local energy storage technologies, development of information and communication tools, to exploit the synergies between energy storage, the smart grid and the citizens

Years	;	Project total cost	Website	Coordinator's	country	Coordinator
2015-20	18	11.4 M€	http://netfficient-project.eu/	Spain		Ayesa advanced technologies SA
Тур	oes of te	chnologies and	services tackled	Partner	S	Countries involved
со	ONSUMERS	GRID STORAGE & POWER-TO-X	POWER GENERATION MARKET	13		7
KER	Enerç	y Management Platform	Hybrid home energy storage system (LV-HESS)	A hybrid utility- scale energy storage system (MV-HESS)	MV-HESS- inverter	MV-HESS management-system
2	optimiza manage autonor of DER Techno optimiza design data of generat trade er market	n for monitoring, ation, ement control and nous exploitation -economic ation for grid using forecasted demand and ion energy to nergy in the and optimize the e operation	aggregated mode.	To allow the lengthening of the batteries life	To provide high density and scalable power electronics.	To allow simple management of different storage technologies and simple Gateway to Energy Managment system.
	consum energy users; c level in by gene energy; model t makes new set Manage	ability; self- and costs for end decrease the CO the environment erating green new business o the market that possible selling a rvice: Energy ement and not ling energy	consumption. Lengthening the battery investment around 10-20%	Lengthening of the battery investment around 10-20%	Simpler and cost- efficient power electronics for industria applications	managing HESS Systems
?	Custom	ers	Residential and small businesses	Utilities and DSOs	Customers	Producers of storage systems

NOBEL GRID

New cost-effective business models

for flexible Smart Grids

Provision of advanced tools and ICT services to all actors in the Smart Grid and retail electricity market in order to ensure benefits from cheaper prices, more secure and stable grids and clean electricity

Years	Project total cost	Website	Website Coordinator's country	
2015-2018	14 M€	http://nobelgrid.eu/	Spain	Etra investigacion y desarrollo sa
Туре	Types of technologies and services tackled			Countries involved
CONSUMERS GRID STORAGE & POWER POWER-TO-X GENERATION		21	11	

KER	SLAM: Advanced Smart meter with extended functionalities	G3M: Application for the monitoring, management and maintenance of distribution network	DRFM: Tool for intermediate entities (aggregators, ESCOs, retailers, etc.)	EMA App: Application for final consumers and prosumers	Nobel Grid Business Model Evaluation tool
!	Provision of detailed energy information in real time, generating flexibility strategies, such as demand response	Manage and maintain the MV/LV grid taking advantage of new technologies, and complying with new policy imperatives and changing business frameworks	Bridges Demand-Side Resources and their flexibility with the distribution grid actors to improve the operation of the processes under their control	Get access to the energy data from the smart meter to enrich and make more understandable energy- related information	Calculation how profitable is a business model for different actors
	Reduction of energy consumption, emissions and billing in at least 20%	Reduction of the costs of management and maintenance of the distribution grid.	Reduction of consumption and emissions	Reduce the energy consumption and billing of the consumer	Generation of more benefits in a more efficient way
?	Stakeholders of the smart grid: DSO, retailers, aggregators, ESCOs and final customers (industrial and domestic)	DSO, and operators of microgrids	Aggregators', Retailers' and ESCOs', with special focus to energy cooperatives and local communities	End users	Any type of companies that would like to make more economical benefits of a smart grid project or product

OSMOSE

Optimal System-Mix Of flexibility Solutions for European electricity

OSMOSE

Flexibility for the integration of renewable energy sources, through a holistic approach in order to capture "silo-breaking" synergies across needs and sources flexibilities.

Year 2018-2	Years Project total cost Website Coordinator's country		inator's country	Coordinator Réseau de Transport			
2010-2	021	28.3 M€	https://www.osmose	-nzuzu.eu/		France	d'électricité SA (RTE)
	Types	of technologies	and services tackled			Partners	Countries involved
	CONSUMERS GRID STORAGE & POWER POWER-TO-X GENERATION MARKET					33	9
KER	flexi rela	mal mix of bilities and ted market design	Demonstrator of grid forming	Demonstra coordina control different s and FA0 device	ated of torage CTS	Smart management system	Near real-time cross- border energy market
`	assess sources improve existing	,	To test new grid forming algorithm	To answer a problematic problems in coordinated system (volt frequency a capacity)	of 3 one age,	Multiple services provided by grid devices, large demand-response and RES generation	To catch the flexibility close to real time depending on real time constraints with short term forecast
	mix of f solutior Europe	st the optimal lexibility as at pan- an system naximising velfare	Synchronism in large power systems with high RES. Increase of the global efficiency for the consumer (grid forming and frequency control for example) and congestion management	Improve free control, dyn voltage cont increase of transfer cap	amic trol and net	Congestion management, system services form RES plants and Increasing Availability of System Services from DR through Aggregation	Enable market players to trade their residual flexible capacities
?	Market policy n	players, and nakers	TSOs.	TSOs.		TSOs	Market players, TSOs

es

FP7 & H2020 PROJECTS

PLAN4RES

Synergistic approach of multi-energy models for an european optimal

energy system management tool

Support to the main stakeholders of the European energy system (TSOs, DSOs, Utilities, Energy providers...) by helping them taking better decisions regarding the development and operation of their energy portfolio, also considering the emerging technologies and innovative flexibility sources while maintaining a high level of reliability

١	YearsProject total cost2017-20203.9 M€		Website	Coordinator's country	Coordinator	
201			https://www.plan4res.eu/	France	Electricité de France (EDF)	
	Types of t	technologies an	d services tackled	Partners	Countries involved	
		GRID	RKET	7	5	
KER	plan4re	es software	plan4res Case Studies	plan4res public dataset	Solvers and modelling system	
	 plan4res software To compute the optimised balance between: Enhancement of the grid for maximising its capacity to host renewable energies by combining the best use of the existing grid and new investments on the grid infrastructure Enhancement of the system's flexibility by combining the best use of all existing flexibilities and new investments in flexible assets 		 To model different questions and issues which might affect the different stakeholders: Multi-modal European energy concept for achieving COP 21 goal considering sector coupling of electricity, gas, heat and transport demand Strategic development of pan-European network considering long-term uncertainties Cost of RES integration and impact of climate change for the European Electricity System 	Public database giving the most possible accurate representation of the european energy system at a 2050 horizon, with hypothesis compliant with COP21 objectives	To solve related optimisation problems linked to high shares of renewable inducing more uncertainties, and coupling of flexibilities (multi energy) inducing high size problems	
	Allowing large shares of renewable in the system		Results from the case studies	Help researchers to conduct studies within a scenario with a high share of renewable	Optimization of problems coming from high share of renewables	
?	Energy cons DSOs, Utiliti providers, m operators, e	narket	Project partners and energy stakeholders	Energy system stakeholders, researchers	Energy stalkeholders, software providers, researchers	

PLANGRIDEV

Distribution grid planning and operational principles for EV mass roll-out while enabling DER integration

Development of new network planning tools and methods for European DSOs for an optimized large-scale roll-out of electromobility in Europe whilst at the same time maximizing the potential of **DER** integration

Years Project total cost		Website	Coordinator's country	Coordina	ator
2013-2016	2013-2016 15.4 M€ <u>https://cordis.europa.eu/project/rc</u> <u>n/109374_fr.html</u>		Germany	RWE Deutso Aktiengesell	
Types of technologies and services tackled			Partners	Countries in	volved
CONSUMERS GRID STORAGE & POWER-TO-X 12					
KER		Methodology for combined EV a	nd DER grid integration		
	charging and g	that grid integration of EVs and rene generation processes and use of stor- cors to control the processes (e.g. EV	age if the regulatory framewo		
Lower energy system costs					
Electricity customer (industry as well as private household customers)					

PROME3THE2US2

Production Method Of Electrical Energy by Enhanced Thermal Electron Emission by the Use of Superior

POWER

Semiconductors

Development, validation and implementation of a novel solid-state conversion mechanism able to transform concentrated solar radiation into electric energy, at very high efficiency, with a direct conversion obtained by an enhanced electron emission from advanced semiconductor structures.

Years	Project total cost	Website	Coordinator's country	Coordinator	
2013-2016	4 M€	https://cordis.europa.eu/project/rcn/ 108455_en.html	Italy	CONSIGLIO NAZIONALE DELLE RICERCHE	
Types o	Types of technologies and services tackled			Countries involved	

	POWER GENERATION	8	5
KER	High-temperature solar cells	Dielectric microspacer	
.	Higher output power and flexibility than the current solar conversion technology	Thermal-to-electric converters working closely to id- conditions. Can be employed in all applications nee high electrical and thermal insulation between two surfaces distant of few micrometres	
	Improvements of technology performances. Maximum conversion efficiency close to 70% (simulation)	Improvements of technology performances	
1	Industrial hardware developers of solar conversion technologies	Industrial hardware developers	

Partners

11

RealValue

FP7 & H2020 PROJECTS

REALVALUE

Realising Value from Electricity Markets with Local Smart Electric Thermal Storage Technology

Demonstration, through the deployment of Smart Electric Thermal Storage (SETS) technology in 1,250 properties in Ireland, Germany and Latvia, of how it can provide value and benefits to the whole electricity supply chain

Years	Project total cost	Website	Coordinator's country	Coordinator
2015-2018	15.4 M€	http://www.realvalueproject.com/	Ireland	Glen dimplex ireland

Types of technologies and services tackled

		CONSUMERS STORAGE & MARKET		12	5
KER	DSM Smart Tariff	Power system modelling and market modelling	VPP optimisation algorithm	Consumer engagement guidance	Understanding of grid and network constraints
9	To customise the benefit from variable electricity pricing	Modelling of systems which are relevant for thermal storage - possibility on electricity networks	Simplified process for managing numbers of complex devices to provide value for system operators	Guidances for interaction with large number of consumers across different demographics	Practical learnings on wide spread use of flexible devices for DSM purposes on distribution networks
	Value for en- users	Ability to quickly assess the potential of innovative technologies on the electricity system	Optimisation against many different criteria (environmental, financial)	Commercial: Better interaction with end consumer; Societal: minimised disruptions	Investment deferral on distribution networks - less need for upgrading of lines wires/cables
P	End consumer	Academia, system & market operators	System operator – consumer	End consumer and Businesses	Systems operators

RESERVE

Renewables in a Stable Electric Grid

GRID MARKET

л

Countries involved

New energy system concepts, implemented as new system support services, enabling distributed, multi-level control of the energy system using pan-European unified network connection codes

Years	Project total cost	Website	Coordinator's country	Coordinator
2016-2018	5 M€	http://www.re-serve.eu	Germany	ERICSSON GmbH

Types of technologies and services tackled Partners Countries involved

	GRID	11	4
KER	New techniques for frequency management with up to 100% RES	New techniques for voltage control with up to 100% RES	Villas node co-simulation Software
`	Continued stable operation of the power grid even when the proportion of RES generation reaches very high levels and the use of fossil fuels is reduced	Stable power supplies even as the proportion of power generation based on RES increases towards 100%	Enabling co-simulation of very complex power network scenarios
	Lower climate impact of power generation enabling environmental goals to be reached, stable power supplies	Lower climate impact of power generation enabling environmental goals to be reached, stable power supplies	The software will contribute towards stablising future power networks with up to 100% RES generation, without hydro-electric power
6	TSOs, society as a whole	TSOs, society as a whole	Society as a whole

SENSIBLE

Storage ENabled Sustainable energy for Buildings and

communitiEs

Development, demonstration and evaluation of a storage-enabled sustainable energy supply for buildings and communities

Ye	ars	Project total cost	Websi	te	Coordinator's country		Coordinator
2015	2015-2017 6.1 M€		http://www.h20 sensible		G	ermany	Siemens Aktiengesellschaft
	Тур	es of technolog	jies and services tackle	ed	Pa	artners	Countries involved
	CON	SUMERS GRID S	TORAGE & POWER OWER-TO-X GENERATION MARKET			14	5
KER	building	lti-modal g automation ystem	Storage as an integrated smart grid asset	Residential h energy manageme solution	ent	Socio-economic effects of local storage	Cost/benefit assessment methodology for network planning with local storage
`	consum generati	Il energy ption and on by using Il and thermal	Development, demonstration and evaluation of a storage-enabled sustainable energy supply for buildings and communities	Control of resid assets (PV, wat heaters, resider batteries, contro loads) in an aggregated way	ter th ntial ur ollable ad at	ontribution to bridg le gap in inderstanding and ccounting for socia ttitudes towards nergy storage	gauge of the investment level
	Increase of energy efficiency of building energy system (storage and other components, e.g. PV, heater, heating ventilation). Minimisation of energy procurement costs		Increase of quality and continuity of service, reduction of technical losses, more extended grid reliability (in islanding operation)	Energy price reduction by bri the gap betwee citizens and energy markets	dging in n ac ergy st in cc pr ww	pportunity to fluence public cceptance of energ orage, thus ducing improved ommunity resilienc ride and trust as ell as willingness to nare excess energy	investments e, o
?	Technol	ogy providers	DSOs, consumers	DSOs, utilities, retailers, aggregators, consumers	pr	SOs, infrastructure roviders, society as whole	

SHAR-Q

Storage capacity over virtual

neighbourhoods of energy ecosystems

Optimisation of storage capacities deployed in the grid with the help of a peer-to-peer interoperability network that connects neighbourhooding RES+Storage ecosystems into a collaboration framework

Years 2016-2019		Project total Website cost		Coordinator's country	Coordinator	
		4 M€	http://www.sharqproject.eu/home	Spain	ATOS SPAIN SA	
Types of technologies and services tackled			and services tackled	Partners	Countries involved	
		STORAGE & POWE POWER-TO-X GENERATI		11	7	
KER		SHAR-Q Platform				
`	Energe mitig	Interoperability network that connects the capacities of the neighbourhooding and wide regional Renewable Energy Sources (RES) and Electrical Energy Storage (EES) ecosystems into a collaboration framework that mitigates the requirement on the overall EES capacities thanks to the shared capacities among the participating actors following a decentralised approach				
	Sharing distributed resources and providing added-value services to exploit the interoperability among resources, not only benefit users but also create a new business ecosystem with novel services based on data					
Energy infrastructure operators, ICT players						

EUROPEAN TECHNOLOGY AND INNOVATION EUROPEAN SMART NETWORKS FOR ENERGY

TRANSITION

PLAN. INNOVATE. ENGAGE.

PLATFORM

SmarterEMC

FP7 & H2020 PROJECTS

SMARTEREMC2

Smarter Grid: Empowering SG Market ACtors through Information and Communication Technologies

Implementation of ICT tools that support the integration of consumers through Demand Response services and the integration of DG/RES through Virtual Power Plants

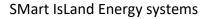
Years	Project total cos	t Web:	site	Coordinator's country	Coordinator
2015-201	2015-2017 3.8 M€ <u>http://www.smartereme</u>		arteremc2.eu/	Greece	Intracom SA telecom Solutions
	Types of technolog	jies and services tack	Partners	Countries involved	
	CONSUMERS	GRID MARKET		11	6
KER	Demand Response Management System (DRMS)	Virtual Power Plant Management System (VPPMS)	Energy Hub (E	Smart Grid data EH) analytics platform (SDAP)	Algorithms for bad data detection for Smart Grids
	ICT enabler for delivering / leveraging demand side management as an option for injecting flexibility in the operation of the Distribution Grid	ICT enabler to aggregate and manage flexible assets (DERs, distributed storage units, loads)	ICT enabler for better managem of the Distributio Grid	1 0 5	stealthy attacks. To quickly identify
	For DSO: provision of the necessary flexibility, solving grid problems. For DRA: provision of DR services to the DSO, or participation in the energy market	Load and production forecasting	Better managerr of the Distributio Grid		Improvement of the cyber security of the grid
?	DR Aggregators, DSOs	VPP Operators and DSOs	DSOs, Microgric Operators	ICT solution providers	ICT solution providers

Smart Net

FP7 & H2020 PROJECTS

SMARTNET

Smart TSO-DSO interaction schemes, market architectures and ICT Solutions for the integration of ancillary services from demand side management and distributed generation


Provision of optimised instruments and modalities to improve the coordination between the grid operators at national and local level (TSOs and DSOs) and the exchange of information for monitoring and for the acquisition of ancillary services (reserve and balancing, voltage balancing control, congestion management) from subjects located in the distribution segment (flexible load and distributed generation)

	Years	Project tota cost	al We	bsite	Coordi	nator's country	Coordinator
2	016-2018	12.7 M€	http://smartr	net-project.eu/		Italy	RSE - Ricerca sul Sistema Energetico
	Types of technologies and services tackled					Partners	Countries involved
		MARKET				22	9
KER	SmartNet TSC ancillary serv market simu	D-DSO fa vices	nartNet testing cility for DSO system onitoring and control	SmartNet t facility fo provision thermosta controlled	r AS from tically	SmartNet testing facility for AS provision from localized storage facilities	An analysis procedure to discover ICT requirements in energy systems
•	Comprehensiv model including transmission, distribution, DE detailed technic economic assessments	g mor coni ER for distr cal loca	I time hitoring and trol of ribution grid tted DER from national TSO	To use a scat amount of thermostatica controlled loa flexibility resc	ally s nds as c	To use a scattered amount of localized storage systems- controlled loads as lexibility resources	Possibility to maintain links between data flow diagrams and ICT requirements in SGAM tools; and to use parametrized scripts to alter ICT requirements and to assess their impacts on the system design
	Better know-ho optimized TSO interactions an market modalit enable AS fron distribution	-DSO syst d redu y to busi	ease flexibility, eem costs uction, further iness sibilities for R	Increase flexi system costs reduction, fur business pos for DER	s ther f	ncrease flexibility, system costs reduction urther business possibilities for DER	More successful system , design
?	TSO, DSO, regulators, EC		D and DSO, ties, final users	TSO and DSO utilities, final	,	۲SO and DSO, utilities, inal user	TSO, DSO, ICT companies, Ancillary service providers

SMILE

Demonstration of different innovative technological and non-technological solutions in largescale smart grid demonstration projects in islands, paving the way for their introduction in the market in the near future

Y	ears	Project total cost	We	bsite	Coordinator's country	Coordinator
201	2017-2021 14 M€ http://www.h2020smile.eu/abo ut-the-project/		Italy	RINA CONSULTING SPA		
	Types of	technologies a	Partners	Countries involved		
	CONSUMERS	GRID STORAGE 8 POWER-TO-2	19	6		
KER	Battery Manageme	<u> </u>	oad Controller	EV managed charging	d Energy Manage System	ement PCM storage systems
ÿ	Managemer storage		ontrol of ads/Aggregator	Smart charging of Electric Vehicles	Efficient Energy Management	Heat storage
	N.A.	N./	А.	Effective manage of Electric Vehicle charging		N.A.
?	Customer	Cu	stomer	Customer/user	Customer	User/customer

SOGNO

Service Oriented Grid for the Network of the Future

Provision of turnkey services for DSOs implementing next generation data-driven monitoring and control systems, based on 5G based ICT. Combination of hardware, software solutions and research activities on different areas, such as advanced deep learning, 5G communication, and cloud virtualisation, to build a new philosophy of electrical grid management

Years	Project total cost	Website	Coordinator's country	Coordinator		
2018-2020	5 M€	https://www.sogno-energy.eu/	Germany	Ericsson GmbH		
Туре	s of technologies an	d services tackled	Partners	Countries involved		
	CONSUMERS	RID	13	6		
KER		Turnkey distribution	automation services			
	State of the art algorit 100 nodes in the pow	g next generation data-driven mor hms optimizing power network sta er network the solution without the need to vi	tus transparency with a low r	number of sensors per		
	 Power networks more stable and run more efficiently reducing environmental impact of power generation and reducing minutes of service lost to customers Enhancement of transparency of the status of the network, thus increasing network operation efficiency. Reduction of investment budgets for distribution system automation for utilities 					
(19)	Society, Consumers, DSOs / Utilities					

STORE&G**Э**

FP7 & H2020 PROJECTS

STORE&GO

Innovative large-scale energy STOragE technologies AND Power-to-Gas concepts after Optimisation

Integration of Power-to-Gas into the daily operation of European energy grids to demonstrate the maturity of the technology and identification of current and future PtG business cases to develop a European PtG roadmap

Years	Project total cost	Website	Coordinator's country	Coordinator
2016-2020	28 M€	http://www.storeandgo.info/	Germany	DVGW
Types	of technologies and	services tackled	Partners	Countries involved
	STORAGE & POWER-TO-X		27	6
-	KER	Demonstration of innova	tive PtG technologies	
		an-wide definition of the future i commendations for the regulativ		
	operatio	ion of business cases for poten on costs perspectives, analysis ogies, assessment of social acc	of ecological effect of PtG	
	Politics			

SUCCESS

Securing Critical Energy Infrastructures

Design, development and validation on small scale field trials of a novel holistic adaptable security framework able to significantly reduce the risks of cyber threats and attacks when next generation, realtime, scalable, unbundled smart meters are deployed in smart electricity grids

Yea	rs	Project total cost	Website	Coordinator's country	Coordinator
2016-2	2018	5 M€	https://success-energy.eu/	Germany	Ericsson GmbH
	Туре	s of technologies a	nd services tackled	Partners	Countries involved
		CONSUMERS	MARKET	17	8
KER	Pa		ty monitoring centre for Critical rastructures	improving the cyber-s	ve countermeasures security and resilience cal infrastuctures
`	on criti monito	cal infrastructure usi	ge of attacks across many countrie ng the project pan-European ling countermeasures to be deploye a to be minimized	identification of attacks t	hrough the monitoring bact of future attacks and
	benefit of critic industr	ing citizens and soci al infrastructures pro y to thrive. Enhance	er-attacks on critical infrastructures, ety in general. More stable operatio oviding an improved basis for d technology for the detection of on critical infrastructures	More stable critical infra: n for the individual user ar Technical advances ma enhance the security an infrastructure to cyber at	nd for society in general. de by the project d resilience of
P	Citizen	s and society in gen	eral, critical infrastructure owners	Citizens and society in g infrastructure owners	eneral, critical

SUNSEED

Sustainable and robust networking for smart electricity distribution

Evolutionary approach to utilisation of already present communication networks from both energy and telecom operators, to be suitably connected to form a converged communication infrastructure for future smart energy grids offering open services

Years	Project total cost	Website	Coordinator's country	Coordinator
2014-2017	4.7 M€	http://sunseed-fp7.eu/	Slovenia	Telekom Slovenije DD
Types o	f technologies an	d services tackled	Partners	Countries involved
	GRID		9	6
-	KER	Methodology for monitoring	g electricity distribution grid	ls
		monstrating that public Long Towork can be used for monitoring		nication
		reasing grid availability, possibili energy	ty to include more renewable s	sources
	Ele			
				A

TILOS

Technology Innovation for the Local Scale, Optimum Integration of Battery Energy Storage

Technique front for

Demonstration of the potential of local / small-scale battery storage to serve a multipurpose role within a smart island microgrid that features high shares of renewable energy and trades electricity with the main electricity network

Years	Project total cost	Website	Coordinato	r's country	Coordinator	
2015-2019	13.7 M€	http://www.tiloshorizon.eu/	Gre	ece	Piraeus University c Applied Sciences	
Types o	technologies and se	rvices tackled	Part	ners	Countries involved	
CONSUMERS	1	3	7			
KER	Integrated NaNiCl2 E & Grid-forming Bat Inverter	Prototype Sm		Foreca	sting Platform	
	MW-scale multi-functio BESS supporting island operation		d remote	Robust fore able to inter	casting platform face EMS	
	High shares of renewal energy	ble Monitoring and re of loads	mote control	Foster incre contribution		
	Operator scheme of the Hybrid Power Station ir sland				f the beneficiaries bed the platform	

TURBO-REFLEX

TURBOmachinery REtrofits enabling FLEXible back-up capacity for the transition of the European energy system

Provision of technology upgrades to retrofit the installed power plants to enable flexible operation without penalties on life, cost and emissions

Years	Project total cost	Website	e Coordinator's		Coordinator
2017-2020	8.1 M€	https://www.turbo- reflex.eu/	Germany		General Electric deutschland holding gmbh
Types o	f technologies and ser	vices tackled	P	artners	Countries involved
	POWER GENERATION			25	9
KER	Reduction of costs p cycle	er Increasing low capability of existing		•	load following bability
.	Methodology to increas part load efficiency, resistance to wear and accurate life informatior	starts by increasing t load capability of exis	he low	thermal plants t	mp rate to allow to better follow the nts of the system
	30% reduction of cycle costs: security of supply and stability of the transmission grid	33% reduction in the of hot starts: security and stability of the transmission grid		10% of the insta capacity in Euro retrofitted by 20 annual cost red million EUR at by reducing var and maintenand	ope could be 030. Potential luction of 100 the European level riable operation
(19)	DSO DSO			DSO, and end	users

ETIP SNET EUROPEAN

TECHNOLOGY AND INNOVATION PLATFORM

SMART NETWORKS FOR

ENERGY TRANSITION

UPGRID

Real proven solutions to enable active demand and distributed generation flexible integration, through a fully controllable LOW Voltage and medium voltage distribution grid

Focus on addressing the constraints and needs arisen from poor observability of LV grid, local accumulation of distributed generation, risks and difficulties in managing the distribution network, aging infrastructure and social and environmental restrictions that inhibit the grid development. The project proposes an open, standardised and integral improvement of the LV grid

Yea	rs	Project to	tal cost	1	Website	Coordinator's country	Coordinator
2015-2	2015-2017 15,7 M€ <u>http://upgrid.eu/</u>		://upgrid.eu/	Spain	Iberdrola distribucion electrica, s.a.		
	Туре	es of techno	logies and	d services ta	ckled	Partners	Countries involved
		CONSUMERS	GRID	MARKET		19	7
KER	Ne Mana	Voltage twork agement /stem		oment for networks	LV software tools	New Generation Ho Gateway and Hon Energy Manageme application	ne PRIME Network
`	Suppor accurat reliable decision process	e and LV O&M ns and	monitor,	solutions to automate rol LV/MV	Monitor the LV grid based on information provided by smart meters, existing systems and RTUs	Leverage the implementation of additional services on of the UPGRID HEMS development	
	the LV the res	network (36 solution of the solution of the solution $s_{0} = s_{0} = s_{0} + s_{0} +$	minutes ir he incider	mprovement) nces/faults in	rk incidences /faults i + Reduction of time i the LV network (1 ectricity service to ou	n development kit, with 6 libraries and	y's then on Consumers
1	DSOs,	Software dev	eloppers a	and customer	S	Software developers, liberalised agents, an Customers	

WISEGRID

Wide scale demonstration of Integrated Solutions and business models for European smartGRID

Provision of a set of solutions and technologies to increase the smartness, stability and security of an open, consumer-centric European energy grid

Yea	ars	Project tota	al cost	Web	site	Coordi	nator's country		Coordinator
2016-	2020	17.6 N	l€	http://www.wisegrid.eu		Spain		Etra investigacion y desarrollo sa	
	Types of technologies and services tackled						Partners	Co	untries involved
	CONSUME	GRID STC	PRAGE & PO VER-TO-X GENE	WER ERATION MARKET			21		8
KER	cockpit mic oper contro and mo	Cockpit: for DSOs or rogrids rators to I, manage unitor their m grid	co appl beco smar	SeCORP: orporate lication to me active, ter energy layers	WiseCO Applicat achieving e deals wh relievin beneficiarie administra procedure cumberse researc	ion energy hile ng s from ative s and ome	WiseEVP: tool/platform us by EVSE operat and EV fleet managers	ors	WG FastV2G: fast EV charging station
(small dis	control of tribution with DER	energy a	ment of the assets of a allowing DR	Strengthen D means of DEI	,	Management of smart charging sessions		Allow V2G activities in EV charging sessions
	stability a of the ne	g flexibility, and security twork with asing share	Reducin supporti consum		15% and 32% energy saving customers		Optimization of th activities related of smart charging an discharging of the EVs and reduce energy billing	with nd	Use EV as dynamic distributed storage devices, feeding electricity stored in their batteries back into the system when needed (fast V2G supply)
?	Small DS	SOs		es, ESCOs lic facilities ers and	Energy retaile aggregators, communities cooperatives consumers ar prosumers (a intermediary companies)	local and of nd	EV fleet manager and EVSE Opera		EVSE Operators

Austria

LEAFS

Integration of Loads and Electric Storage Systems into Advanced Flexibility Schemes for LV Networks LEAFS

Evaluation of the effects of increased costumer and energy market driven utilization of energy storage systems and load flexibility on power distribution grids. Technologies and operation strategies are developed enabling optimal use of distribution grid infrastructure by activating flexibilities using direct or indirect control by the local grid operator or incentives

Years	Project total cost	Website	Coordinator's country	Coordinator			
2016-2018	3.3 M€	https://www.ait.ac.at/en/research- fields/smart-grids/projects/leafs-lv- loads-and-storage-integration/	Austria	Austrian Institute of Technology			
Ту	pes of technologie	s and services tackled	Partners	Countries involved			
cc	INSUMERS GRID STOR		N.A.	1			
_	KER	Active Intelligent Control	of Flexibilities				
	Multi-Us System	e (Grid, Customer and Market) intellig	ent Control of a Central Stor	age			
-	More PV Integration, Local Consumption of Renewables, Less CO ₂ emissions. Flexible integration of distributed energy resources at minimum network reinforcement costs as well as higher self-consumption level for customers						
	Custom	er and Solution Providers.	·				

EUROPEAN TECHNOLOGY AND SMART NETWORKS FOR

INNOVATION PLATFORM SMART NETWORKS FOR ENERGY TRANSITION

SMART GRID BATTERY STORAGE PROJECT **PROTTES**

PROTTES

Multimodal operation of battery storage for grid services and ancillary services

Presentation of how battery systems can contribute to system stability in addition to the contribution for providing ancillary services with high share of renewable energy

Years	Project total cost	Website	Coordinator's country	Coordinator
2016-20	19 4.7 M€ <u>I</u>	https://www.netz-noe.at/Netz- Niederosterreich/Wissenswertes- 2/Forschungsprojekt.aspx	Austria	Netz NÖ GmbH
	Types of technologies a	and services tackled	Partners	Countries involved
	GRID STORAGE POWER-TO	E& MARKET	N.A.	1
KER	Multimodal operation battery systems	of Synthetic (virtual) inertia	Business Models for battery systems	Battery systems as an alternative to grid reinforcement
	Operation for two or more functions simultaneously: primary regulation, static v level maintenance, reactiv power injection, etc.		Improved economy of battery systems by simultaneously running more than one function	Recommendations for adapting regulations
•	Provision of ancillary servi participation in system	ces, Stability of electrical grids	Speeding up the implementation of	Cost decrease for services for system

Electricity companies, grid operators

UNDERGROUND SUN.STORAGE

renewable integration

UNDERGROUND SUN.STORAGE

Grid operators

Storing energy from wind and solar power below ground

Testing of the approach of transforming renewable energy to methane by using electrolysis and storage in the same underground infrastructure ²¹

Grid operators

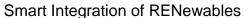
improvement of grid

Grid operators

stability

Years	Project total cost	Website	Coordinator's count	ry Coordinator
2013-2017 4.6 M€ https://www.underground-sun-storage.at/en		Austria	RAG	
Туре	s of technolo	gies and services tackled	Partners	Countries involved
		STORAGE & POWER-TO-X	7	1
C	and halans!	ng (storage) of Renewable		

KER	Seasonal balancing (storage) of Renewable Energy	Underground Methanation
Ý	To make Hydrogen via electrolysis out of renewable energy by using the Power to Gas process	Transformation of renewable energy to methane (natural gas), using the same infrastructure for conversion and storage
	Feasibility of an energy system based on a high share of renewables	Establishment of a sustainable carbon cycle, since CO_2 is consumed in the process of transforming RES to a "green gas"
(All stakeholders in a renewable energy system	All stakeholders in a renewable energy system, and society


²¹ The follow-up of this project is the UNDERGROUND SUN.CONVERSION project: Production of natural gas directly within a gas reservoir using a microbiological process with storage it in the same reservoir (see https://www.underground-sun-conversion.at/en).

Croatia

SIREN

Assessment of Croatia's transmission and generation adequacy in order to determine the flexibility requirements at different operating states of the system. Investigation of the benefits of energy storage units in transmission systems

Yea	ars	Projec co		Web	osite	Cod	ordinator's country	Coordinator
2015-	2018	0.3	M€	http://siren.fe	er.hr/en/siren		Croatia	FER UNIZG
	Туре	s of techr	ologies a	Ind services tack	led		Partners	Countries involved
		GRI	STORAGE POWER-TO	& MARKET			3	1
KER	•	perating dures		Investment trategies	Requirements Connection of r Wind Power Pla	new	Services provided by storage	Rules on Storage Operation
`	New ope procedu conside volatility uncertai the winc	ring the and nty of	locations of storag	transmission	Imbalance penal system to be impelmented with the Renewable energy act		Definition of battery services to support non-dispatchable generation	Assessment of the role of the batteries and flywheel in Croatian transmission network
	Better assessn the rese needed		storage of		Higher power system operatior security	ı	Financial self- sustainability of batteries	Arbitrage, frequency regulation, ramping, congestion relief, voltage support, transient stability
1	Croatiar system	n energy	Croatian	energy system	Croatian energy system		Croatian energy system	Croatian energy system

ETIP SNET

EUROPEAN TECHNOLOGY AND INNOVATION PLATFORM SMART NETWORKS FOR ENERGY TRANSITION

UGRIP

MicroGRId Positioning

Development of a full-scale microgrid that consists of distributed generators, both renewable and controllable, storage units and flexible loads. A structure of the local, distribution-level market will be defined and demonstrated

Years	Project total cost	Website	Coordinator's country	Coordinator
2016-2019	1.1 M€	http://www.ugrip.eu/	Croatia	FER-UNIZG
Types of	f technologie	s and services tackled	Partners	Countries involved

Types of technologies and services tackled

	CONSUMERS GRID STORAGE 8 POWER-TO-X	BOWER GENERATION MARKET	6	3
KER	Development of a microgrid	Standardized communication protocols	Microgrid operation optimization	Market design scheme for the distribution level markets
	Microgrid scenarios will be specified and simulated Test cases run in the FER-UNIZGs' laboratory in order to advance from simulation to real operation	Development and definition of standardized communication protocols between the microgrid elements and the central computer in charge of the microgrid operation, as well as the microgrid and local (distribution level) electricity markets	Centralized EMPC-based controller provides a trajectory of future control inputs satisfying system dynamics and constraints. Robust framework that optimizes the scheduling process (including uncertainty management) of a microgrid while actively participating in electricity markets.	Definition and demonstration of a structure of the local, distribution-level market. Investigation of complex interactions between microgrid, distribution network, wholesale electricity market and local distribution level market: proposition of a viable operation mechanism
	Lab demonstration of the technical feasibility and economic viability of microgrids as means to profit from local clean energy sources. Increase system – wide efficiency, reliability and security and support the transition towards low – carbon energy systems	Commercial and technological benefits that will enable the participation of new market players, i.e. aggregators and prosumers in the future flexibility markets	Minimization of the microgrid operational costs. Policies that will reduce energy consumption Improvement of energy efficiency	
1	Small consumers	Communities, industry and society in general	End-users	End-users

Cyprus

CYPRUS RESGRID

CYPRUS RESGRID

Countries involved

Technical assistance for assessing the current state of the transmission and distribution electricity systems and proposing optimum solutions for increasing the amount of Renewable Energy Sources generation that can be fed in the electricity system of the Republic of Cyprus

	Years	Project total cost	Website	Coordinator's country	Coordinator
20	14-2016	0.4 M€	N.A.	Cyprus	JRC/European Commission

Types of technologies and services tackled

KER

Partners

GRID	10
	Market analysis model

Ÿ	Support the Government of Cyprus to establish a comprehensive medium- to long-term policy for the optimum penetration of renewable energy in the electricity system until 2030
	Cheaper, more secure, more environmental friendly energy system
(10)	Government of Cyprus (Ministry of Energy)

SMARTPV

Smart net metering for promotion and cost-efficient grid integration of PV technology in Cyprus

Investigation of pilot net metering schemes for cost-effective PV implementation and higher grid penetration of distributed generation in Cyprus

Yea	ars	Project total cost	,	Website	Co	oordinator's country	Coordinator
2013-	2017	1.2 M€	http://www.	smartpvproject.eu/		Cyprus	University of Cyprus
	Types	of technologies an	d services tackle	d	Partners	s Co	untries involved
		CONSUMERS POWER GENERATION	MARKET		5		1
KER	Po	licy Recommendat	ion	Web application		Time of Use	e tariff application
(pointing econom	on of smart net-meto the way towards a n nically and environme able electricity grid	nore to more entally real tir	bility of electricity cons nitor their energy profi me and compare then cal energy data	iles in		ng, allowing to -up of additional us contributing to ion of existing
		e of self-consumptio of total consumption) reduct	ential peak consumpti tion (up to -3.19%) an y conservation (-2,17%	d	Reduction of re consumption (-	sidential peak energy 3.19%, 1.03% and Immer, middle and
?		stakeholders (local ies, network operato ers)		s, consumers		Consumers, pro	osumers, utilities

9

STORES

Promotion of higher penetration of distributed PV through storage for all

5

Boosting PV self-consumption in the MED region through an optimal residential storage solution. Testing of coupled solutions for the consumer in different pilot sites taking into account local parameters for optimization and using efficiency measures

Years	Project total cost	Website	Coordinator's country	Coordinator
2016-2019	1.2 M€	<u>https://stores.interreg-</u> <u>med.eu/</u>	Cyprus	FOSS Research Centre for Sustainable Energy
Types	of technologies an	d services tackled	Partners	Countries involved

CONSUMERS	STORAGE & POWER-TO-X	POWER	MARKET
	TO MENTO A	GENERATION	

KER	Policy Recommendation	Pilot Implementation
9	Development and validation of an improved self- consumption policy	Use of services by five pilot residential consumers, including increased self-consumption, based on PV systems in conjunction with ESS. Possibility to do peak-load shaving by utilizing stored energy
	Introduction of innovative smart policies to promote PV integration. Adoption of smart self-consumption policies to integrate PV and ESS at the residential and social level.	Reduction of dependency of residential users on the electricity network. Reduction of CO_2 emissions. Implementation of a social ESS in a distribution substation, sharing the same LV feeder with the residential pilots.
?	Key energy stakeholders (public authorities, policy makers, DSOs, etc.) in participating regions as well as in islands and rural areas throughout the Mediterranean region	End-users in residential households

Czech Republic

SAVR

Automatic voltage regulation and reactive

SAVR

1

power system

Voltage control in pilot nodes by reactive power of the connected generators. Demanded voltage is defined by dispatcher or by the OPF. Producers with the SAVR installations support the distribution grid instead of neutral behaviour only

Years	Project total cost	Website	Coordinator's country	Coordinator
Since 2000	N.A.	N.A.	Czech Republic	ČEZ Distribuce and producers
Types of technologies and services tackled			Partners	Countries involved

Types of technologies and services tackled Partners

C	SRID 7
KER	Increase of DER hosting capacity
ÿ	U/Q regulation is cost effective solution – in other case DSO would either stop further RES integration or reinforce the grid
	Quality of supply. Reduction of grid related costs (avoided grid investments). Loss reduction. Higher RES availability in given place
1	Customer

Denmark

CITIES

Center for IT-Intelligent Energy systems

Addressing the deficiency of the energy system by establishing an integrated research centre covering all aspects of the energy system, including gas, power, district heating/cooling and biomass, and most importantly methods to forecast, control and optimize their interactions through the use of advanced ICT solutions

Years	Project total cost	Website	Coordinator's country	Coordinator		
2014-2021	10 M€	http://smart-cities-centre.org/	Denmark	Technical University of Denmark		
Types of t	Types of technologies and services tackled Partners					
CONSUMERS	GRID STORAGE & POWER-TO-X	POWER GENERATION MARKET	N.A.	5		
	KER	Smart grids				
	9	An integrated research centre data in integrated energy systems.	ntelligent with an			
		An accelerated path towards a fossil products, more flexibility in the energ				
		The entire energy system stakeholde	ers			

ELECTROGAS

ELECTROGAS

Electrogas, the renewable e-storage buffer

Biogenic production of CH₄ from CO₂ in anaerobic digesters (AD), by either ex situ or in situ supply of reducing equivalents which may be added indirectly via addition of H₂ gas produced by electrolysis, or directly via cathodic supply of electrons to microbes

Years	Project total cost	Website	Coordinator's co	ountry	Coordinator
2014-2019	3.5 M€	http://projects.au.dk/electrogas/	Denmark		Aarhus University
Types of	f technologies and	services tackled	Partners	Countr	ies involved
	STORAGE & POW POWER-TO-X		8		2
_	KER	Biomethanation	technology		_
		ower to gas (CH4) technology which newable electricity dominated grid.	n can operate on off i	in an	
_	Ei pi	p to 80% more methane from bioma ither as electricity storage with gas t rice or less than biomethane) source atform chemicals. Cost effective tec	o power or a cheap of CH4 for transpor	(same	-
	P P	roducers and consumers of the dev	eloped technology.		

EL UPGRADED BIOGAS

EL UPGRADED BIOGAS

Demonstration of a 10 Nm3/h biogas upgrading plant using 50 kW Solid Oxide Electrolyzer and catalytic methanation

Years	Project total cost	Website	Coordinator's country	Coordinator
2013-2017	5.3 M€	https://energiforskning.dk/ en/node/7155	Denmark	Haldor Topsøe A/S
Types	of technologies a	nd services tackled	Partners	Countries involved
[POWER MARKET	10	1
	KER		egrated Solid Oxide Electroly (SOEC) and methanation	zer
		Using SOEC to provid methanation	e hydrogen for catalytic	
		converting renewable	ential from biogas by 60 % by electricity and make it storable. effciency, transient response a	nd
	P	Farmers and society a	is a whole	

ENERGY DATA SERVICE

ENERGY DATA SERVICE

Years	-	ect total cost	Website	Coordinator's country	Coordinator
2016-2017	1.	.6 M€	N.A.	Denmark	Energinet
Types	of tech	nologies a	nd services tackled	Partners	Countries involved
		CONSUME	25	1	1
		KER	Web-portal: <u>https://ene energisy</u>		_
		ý	Enabler for digitalisation, new b	usiness models, new services	
			Enabler for digitalisation, new b	usiness models, new services	_
		(10)	Universities, market participants	s, IT-companies	

IHSMAG

IHSMAG

Integrating Households in the Smart Grid

Development of a comprehensive design of household smart grid solutions: technologies in households, daily electricity consumption practices of the household members and electrical system administrative and institutional rules that affect the implementation of new smart grid solutions

Years	Project total cost	Website	Coordinator's country	Coordinator
2012-2016	1.1 M€	https://ses.jrc.ec.europa.eu/ih smag	Denmark	Danish Building Research Institute, Aalborg University
Types	of technologies a	nd services tackled	Partners	Countries involved
	CONSUMERS STORAGE POWER-TO	& MARKET	4	3
	KER	Insights into user behaviour a solut	•	DR
	S	atic time-of-use pricing combined	with EVs.	
	er	nprovement of the balancing of rer nergy consumption. Participation c bad shifting).		
		SOs and consumers.		

Finland

EL-TRAN

Transition to a resource effective and

EL-TRAN

climate neutral electric energy system

Resolution of policy problems involved in a transition to a resource efficient, climate neutral electricity system by outlining requirements for Finnish energy policy actors to implement the transition and by defining a roadmap for the public sector to support the process

Years		Project total cost	Website	Coordinator's country	Coordinator
2015-2017		3.2 M€	https://el-tran.fi/in-english/	Finland	University of Tampere
Туре	Types of technologies and services tackled Partners Countries				
		MARKET]	6	1
	KER Roadmap for a more resource effective and climat energy system in Finland				ctric
		stake	Imap for the Finnish public sector to holders in the initiated energy trans and suggestions for institutional cha	ition: tasks for each public-se	ector
			tain an optimal balance between co ng various solutions to improve reso ality.		
		Socie	ety		

HEILA

Integrated business platform of

HEILA

distributed energy resources

Construction of extensive business development platform, based on the integration of laboratories and simulation environments of the research centre VTT and universities. The platform includes real-life pilots for developing and testing the functions needed in the management of future energy system. One essential target is to build a virtual microgrid

Years	Project total cost	Website	Coordinator's country	Coordinator
2017-2018	1 M€	N.A.	Finland	Tampere University of Technology

Types of technologies and services tackled

f technologies and services tackled		Partners	Countries involved
CONSUMERS GRID MAR	KET	N.A.	1
KER	Development p	olatform	

ÿ	Scalable concept for information exchange. Larger scale piloting platform through combining different laboratories and pilot sites using remote connections
	Cost-effective operation of the future smart grids. Information exchange with a multitude of small-scale resources
1	Companies developing new solutions and research organizations

VAGE

Improving the value of variable and uncertain

VAGE

power generation in energy systems

Improvement of operational decision making in power systems when considering the variability and uncertainty of wind, solar, water inflow, heat and electricity demand, their correlations and possible sources of flexibility, enabling optimisation of storage time scales (up to 10 days) and wind/PV forecasting with uncertainty estimates in different time scales

Years		Project total cost Website			Coordinator's country	Coordinator	
2015-201	8	1.4 M€	https://clicinnovation.fi/pl -improving-value-variable power-generation-energy	e-uncertain-	Finland	VTT	
Types of technologies and services tackled Partners Countries involved							
_			RAGE & POWER ER-TO-X GENERATION	2		1	
K	ER	Backbone - Open source energy systems modelling framework					
		Better optimization of interconnected energy systems using high temporal and geographic resolution for high shares of variable generation, storages and demand side representation					
	1	Increasing the value of variable power generation for society					
)	Policy and business decision makers, academia					

WIVE

OTHER PROJECTS

WIVE

Wireless for Verticals

Development of future radio technology and study of its application for verticals by setting up use cases, scenarios and requirements for the technology as well as via testing. Testing and trialing of the technology will happen in test facilities provided by 5G Test Network Finland as well as in the testbeds from the consortium

Years	Years Project total cost		Website	Coordinator's country	Coordinator		
2017-201	017-2018 4 M€		https://wive.turkuamk.fi/	Finland	Turku University of Applie Sciences		
	Types o	f technologi	es and services tackled	Partners	Countries involved		
		cc	INSUMERS	6	1		
_	KER Fee			er line protection			
	To experiment and validate what types of existing and forthcoming wireless technologies can be applied for remote monitoring, control, and protection in a realistic environment						
-		Significant CAPEX and OPEX cost savings and better flexility to re-configure monitoring, control, and protection capabilities in medium voltage networks. Better quality of electricity and reduced distribution outages					
	1	DSOs, TSOs, Consumers					

France

POSTE INTELLIGENT

Development of a 100% digital and optical solution that will enhance the energy and operational performance of the grid as well as its reliability

Years	Project total cost	Website	Coordinator's country	Coordinator
2012-2018	32 M€	http://www.posteintelligent.com/	France	RTE
Types of	f technologies a	and services tackled	Partners	Countries involved
CON		TORAGE & POWER GENERATION	7	1
	KER	Digitized subs	tations	
	`	A substation which was a power hub Digitization of a TSO	will be a data hub	
		Enhance the energy and operational well as its reliability	performance of the grid as	_
	(10)	Users and customers		

SUBZERO

SUBZERO

Next Generation Compact Substations

Co-development (RTE and industrial partners) of the next generations of compact HV substations which will be ecodesigned (e.g. SF6-free up to 400kV), digital ready (e.g. NCIT and IEC61850 process-bus) and more flexible for maintenance and operation

Years	Project total cost	Website	Coordinator's country	Coordinator
2018-2024	322 M€	N.A.	France	RTE
Types o	f technologies an	d services tackle	ed Partners	Countries involved
	CONSUMERS	RID	N.A.	8
	KER	Ecodes	signed compact substation	
	includi	ng life-cycle ana	lutions for compact Substations up to lysis methodologies to assess the concern of such solutions.	
			e substations assets on the environm st and outages caused by those asse	
	Overa	Il society and cus	tomer.	

Germany

ADELE

Adiabatic Compressed-Air Energy Storage for Electricity Supply

ADELE

for Electricity Supply Development of Compressed Air Energy Storage (ACAES) for electricity storage Project total Coordinator's Years Website Coordinator cost country 2013https://www.rwe.com/web/cms/mediablob/en/391748/data/3 0.8 M€ Germany RWE/DLR 2017 64260/1/rwe-power-ag/innovations/Brochure-ADELE.pd Types of technologies and services tackled Partners **Countries involved** STORAGE & 6 1 KER Adiabatic Compressed Air Energy Storage Improved grid integration of renewable energy. Transition towards CO2-neutral energy generation, grid stability, avoided curtailment of RES. Utilities, grid operators, power plant operators.

ALEGRO

ALEGRO

Aachen Liege Electricity Grid Overlay

320-kVDC-Connection between Belgian and German Electrical Transmission Grid aiming at carrying around 1,000 megawatts. The power line will use high-voltage direct-current (HVDC) transmission technology and will be installed as an underground cable

Years	Project total cost	Website	Coordinator's cou	ntry Coordinator
2009-2021	500 M€	https://www.amprion.net/Grid- expansion/Our-Projects/ALEGrO	Germany	Amprion
Types	of technologie	s and services tackled	Partners	Countries involved
	GRID	MARKET	N.A.	2
		between Belgian	and Germany	
		KER Electrical capacity on	-	
		Connection of electricity ma	rkets	
	1	Connection of electricity ma supply	rkets. Security of	
		European electricity market		

AMPACITY

Ampacity - 10 kV superconductor

AMPACITY

system for high-power electricity links

Proof of the technical suitability of superconducting technologies in distribution grids; evaluation of the investment for a 10-kV cable in combination with a superconducting fault current limiter as an alternative to a 110-kV cable system

Years	Project total cost	Website	Coordinator's country	Coordinator			
2011-2016	13.5 M€	13.5 M€ <i>N.A.</i> Germany					
Types of	Partners	Countries involved					
	CONSUMERS GRID	MARKET	N.A.	3			
	KER	Guidelines: "Implementation the cable sy					
		Proof of the technical suitabilit technologies	y of superconducting				
		Open source result					
	(DSO					

DC-BLOCKING DEVICE

DC BLOCKING DEVICE

1

Test installation of DC-Blocking device prototype, connected to the neutral of a transformer to suppress any DC-current

Years	ars Project total cost Website Coordinator's count		Coordinator's country	Coordinator	
2016-2019	N.A.	N.A.	Germany	Amprion	
Types of technologies and services tackled			Partners (Countries involved	

Types of technologies and services tackled

GRID	N.A .
KER	DC-current suppression in HVAC-Grid
9	A DC-Blocking device connected to the neutral of a transformer
	Suppression of any DC-current
?	TSOs

FLEXITES

Kraftwerksflexibilisierung durch Thermische Energiespeicher

FLEXITES

Operational flexibilisation of coal-fired steam power plants through integration of heat storage

Years	Project total Website		Coordinator's country	Coordinator
2017-2019	3.5 M€	N.A.	Germany	German Aerospace Center (DLR)
Types o	of technologies and	services tackled	Partners	Countries involved
	STORAGE & POWER POWER-TO-X GENERATION	MARKET	N.A.	1
KER	Flexible	steam power plants	Improved heat	storage technologies
	Flexibilisation of coal through integration of	-fired steam power plants f heat storage		ature heat storage technology nd for industrial process heat.
		y offering contribution to grid ng curtailment of RE. Integration y Source on the grid.	Improved utilisation of R	E in the energy system.
(10)	Utilities, power plant	operators	Supplier of heat storage	technology

INTEGRATED IT-SYSTEMS

OTHER PROJECTS

INTEGRATED IT-SYSTEMS

Building up a platform to easily connect the existing and new IT-Systems in a standardized way

Years	Project total Website		te	e Coordinator's country		Coordinator
2017-2018	1 M€ N.A.			Germany		Amprion GmbH
Types of	s of technologies and services tackled			Partners		Countries involved
	GRID			N.A.		1
KER	Implementation of a data exchange infrastructure		Implementation of a CIM based Enterprise Data Model			Integration of a CIM-Cache
9	Infrastructure with standardized ways to develop, deploy and operate an integrated internal IT-landscape		when new	the CIM based Data Model w requirements arise using lardized Data Model for grid	mos deve a ful	ndard software product covering t of the needed functionality and elopment of an interface to reach Il support in the existing ustructure
	Technical support of a single- point-of-truth perspective and raise of data quality		Connection of the data in new systems to the legacy data silos. Common understanding of the data used by different systems leading to high quality			ndardized way of storing the data eving high data quality
(19)	Internal IT departmenent, integrators of IT systems and their users		Data use	rs and data providers		r of the exchanged data and quality managers

KRYOLENS

Kryogene Luftenergiespeicherung

KRYOLENS

Countries involved

1

(Cryogenic air energy storage)

KER

Increase of the technology readiness level of the bulk energy storage technology of Liquid Air Energy Storage (LAES) by process and component optimisation and determination of the techno-economic potential

Years	Project total cost	Website	Coordinator's country	Coordinator
2016-2019	2.8 M€	N.A.	Germany	Linde AG

Types of technologies and services tackled

STORAGE & POWER-TO-X

LAES technology development and economic assessment

Partners

6

ÿ	Increase the TRL of LAES technology, thus contributing to meet the need for large-scale energy storage
	Availability of large-scale energy storage combining proven technology with scalability and site independence
1	Utilities, equipment manufacturers

KWK FLEX

Highly flexible Combined Heat and Power by Thermal Energy Storage and "Power-to-Heat"

Thermal load prediction and flexible generation and dispatch of combined heat and power for district heating

Years	Project total cost	Website	Coordinator's country	Coordinator
2016-2019	0.3 M€	N.A.	Germany	Kempten University of Applied Sciences
Types of technologies and services tackled			Partners	Countries involved
	STORAGE & POWER POWER-TO-X GENERATION	MARKET	2	1

GE & TO-X	POWER GENERATION	MARKET		MARKET
--------------	---------------------	--------	--	--------

KER	Advanced thermal load prediction	······································		
	On-site advanced thermal load prediction in district heating grids, using machine-learning technologies, in particular based on "deep learning".	Optimised dispatch of thermal generation units and thermal energy storage in district heating and cooling systems	Improved insight into plant dynamics of thermal generation and energy storage units	
	Reduced emissions and cost by optimized plant dispatch according to required thermal loads.	Reduced use of fossil fuels (i.e. reduced costs, emissions).	Reduced fuel consumption, costs and wear of components during transient operation	
?	District heating and cooling system operators.	Operator of thermal generation units district heating and cooling.	and thermal energy storage for	

STENSEA

Stored Energy in the Sea

STENSEA

Development and testing of a novel pumped storage concept for storing large amounts of electrical energy offshore in combination with offshore wind farms: use of the sea itself as upper storage reservoir and a hollow sphere on the seabed as the lower storage reservoir

Years	Project total cost	Website Coordinator's c		Coordinator	
2013-2017	N.A.	https://www.iee.fraunhofer.de/en/ research_projects/search/2017/ stensea.html	Germany	Fraunhofer IEE	
Туре	es of technologie	es and services tackled	Partners	Countries involved	
	STORAGE 8 POWER-TO->		3	1	

KER	Feasibility proved	Full-Scale concept developed
	To add a valuable storage option (demonstrated in a relevant environment) to the future energy system as well as to Europe's storage portfolio.	Availability of a concept of a full scale system and logistics, based on results from model experiment thus making a good exploitation possible. Results partly published.
	The technology can store energy for around 2€cent/kWh, without severe geological impact compared to conventional pumped hydro storage plants.	High impact of results (partly published) in public, thus raising a high interest of possible users, companies and public.
1	European energy system stakeholders.	Public, Research, Policy makers.

SWARMGRID

Safe operation of electric grids with swarmenabled system services

SWARMGRID

Simulation and contribution of decentralized system units "swarm" to system stability

Years	Project total cost	Website	Coordinator's country	Coordinator		
2015-2018 4.2 M€		http://www.acs.eonerc.rwth- aachen.de/cms/E-ON-ERC- ACS/Forschung/Forschungsprojekte/ Gruppe-Large-Software-System- Challenges/~Irjn/SwarmGrid/?lidx=1	Germany	RWTH Aachen - Institute for High Voltage Technology		
Тур	Types of technologies and services tackled Partners Count					
	CONSUMERS	GRID MARKET	4	1		
	KER Secured system operation approach					
	ý	To develop approaches for the secure systems.	e operation of the electrical e	energy		
	Stablity and security of the whole system.					
	All participants of the electrical energy system.					

VARIABLE SHUNT REACTOR

VARIABLE SHUNT REACTOR

Enhancement of voltage control in the 400kV-Grid due to the large regulation range of the shunt reactor (50 to 250MVAr)

Years	Projec	t total cost	Website	Coordinator's country	Coordinator
2013-2017		4 M€	N.A.	Germany	Amprion
Types of technologies and services tack			vices tackled	Partners	Countries involved
GRID				N.A.	1
-	KER		Enhanced vo	oltage control in the 400kV-Grid	
	ý	•	U	e shunt reactor (50 to 250MVAr) in o I for max. 300.000 switching operati	
Improved voltage contro			oltage control.		
	1	TSOs.			

SMART

SYNERGY

OTHER PROJECTS

Hungary

SMART SYNERGY

Measuring the impact of smart meters on consumers

Analysis of Smart Meter rollout solutions, obstacles and technological needs from a DSO point of view, and in particular of the attitude of consumers, the technological possibilities of multiutility smart metering, possible business models and data security & protection aspects

Years	Project total cost	Website	Coordinator's country	Coordinator			
2012-2013	N.A.	https://www.interregeurope.eu/ policylearning/good- practices/item /915/smart-synergy-project/	Hungary	DÉMÁSZ			
Types of technologies and services tackled Partners Countries invo							
	CONSUMERS	RID	4	1			
KER	KER Conclusions of the analysis of smart meter rollout solutions, obstacles and technological needs from a DSO point of view						
	Definition of the best available and most cost efficient technological solutions for multi- utility smart metering (in terms of metering, data transmission and data registering). Demonstration of not relevant resistance of consumers.						
	Successful smart meter data reading implemented by GSM (97-99%) and by PLC (96- 98%).						
I	TSOs, DSOs, Government, Consumers.						

Ireland

DLR

DLR

Dynamic Line Ratings

Four-year trial of dynamic line rating technology on selected 220kV and 110kV feeders in the Irish system. This trial will include collaboration with the asset owner to ensure the overall least cost solution is found

Years	Project total cost	Website	Coordinator's country	Coordinator	
2018-2022	8-2022 0.5 M€ <i>N.A.</i>		Ireland	EirGrid	

Types of technologies and services tackled

GRID

Partners	Countries involved

1

N.A.

KER	Results of Trial Dynamic Line Ratings Deployment
ÿ	Increase utilization of existing assets at minimal cost. Relaxing operational limits with limited impact on security.
	Relieving congestion and reduce capital and operational expenditure through increased utilization of true asset capacity
1	Customers

DS3

DS₃

Delivering a Secure Sustainable System

Ensuring that the power system can securely be operated with increasing amounts of variable non-synchronous renewable generation over the coming years

Y	'ears	Project total cost	Website		Coordinator's c	ountry	Coordinator
2011-2020		N.A.	http://www.eirgridgroup.com/how- the-grid-works/ds3-programme/		Ireland and No Ireland	rthern	EirGrid and SONI
	Types of teo	ners	Countri	ies involved			
	CONSUMERS		WER RATION MARKET	:	3		2
KER	Wind Se Assessme (WSA	ent Tool man	v System Services for aging high renewable penetration	New cont	rol room tools	р	Enhanced erformance monitoring
(Real time assessment of transient and voltage stability.		service products: nronous inertial onse, fast frequency onse, fast post fault r recovery, mic/steady state reactive ve and ramping.	penetration, RoCoF; 24 calculation of requirement	hours look ahead of ramping rs, forecast of the ile and stability with an	docun existin	ardisation and nentation of ig processes on island basis.
	More renewable generation in Ireland and Northern Ireland and reduce carbon emissions: from 60% to 65%; lower costs.		cted production cost g of €300m by 2020 ed by allowing the m to operate with up to renewable generation. nuing increase of SNSP % by 2020.			so tha units o these deroga	on-compliances, t generating can remedy issues, submit ations or revise contracted
1	Customer. Customer.		omer.	User, Custo	mer.	TSO,	Customer.

POWER OFF AND SAVE

POWER OFF AND SAVE

Save money by better managing your electricity use

Rewarding customers who agree to reduce their energy use when electricity demand is high

Years	Project total cost	Website	Coordinator's country	Coordinator
2016-2018	0.3 M€	http://www.eirgridgroup.c om/how-the-grid- works/power-off-save/	Ireland	EirGrid

Types of tech

hnologies a	and services tackled	Partners	Countries involved
	MARKET	2	1
KER	Availability, response	time and volume of dom	estic demand response
ÿ		ibility to get Demand Resp nsumer behaviour aspects	
	Provision of flexibility to p intermittent energy supp	power systems allowing fo ly	r a greater penetration of
(10)	TSOs, Consumers		

POWER LINE GUARDIAN / TOWER ROUTER

POWER LINE GUARDIAN / TOWER ROUTER

Demonstration of a tower router from SmartWires expanding on the capabilities of the technology of the distributed power flow controller "Power Guardian®", also from SmartWires. This device can increase or decrease a line's reactance to electrical power flow in real time, permitting greater use of existing transmission capacity

Years	Project total cost	Website	Coordinator's country	Coordinator
2015-2019	0.3 M€	N.A.	Ireland	EirGrid
Туре	Types of technologies and services tackled Partners			
		SRID	N.A.	2
	KER	Results of Trial Power	r Flow Controller Deployment	
		Managing power flows on cor utilization of parallel assets ar	nstrained boundaries to ensure and avoid building new assets	
		Reduce costs and impact on Reduce capital and operation		_

SCHWUNGRAD RHODE HYBRID TEST FACILITY

Customer

SCHWUNGRAD RHODE HYBRID TEST FACILITY

Development and implementation of an operational testing of a flywheel energy storage plant (4 x 150 kW units) connected to the 110kV electrical grid to demonstrate the provision of fast acting stabilisation system services required by the Transmission System Operator, Eirgrid. Schwungrad will also integrate battery technology to produce an innovative hybrid system, connected to the electrical grid to provide further system services

Years	Project total cost	Website	Coordinator's country	Coordinator
2014-2017	2.75 M€	N.A.	Ireland	Schwungrad Energie

Types of technologies and services tackled Partners Countries involved

 Image: Note of the system of the system and demonstration that hybrid battery flywheel storage can provide services in the time frame of 500ms to 20 minutes.
 Service of the system and demonstration that hybrid battery flywheel storage can provide services in the time frame of 500ms to 20 minutes.
 Service of the system and demonstration that hybrid battery flywheel storage can provide services in the time frame of 500ms to 20 minutes.
 Service of the system and demonstration that hybrid battery flywheel storage can provide services in the time frame of 500ms to 20 minutes.
 Service of the system and demonstration that hybrid battery flywheel storage can provide services in the time frame of 500ms to 20 minutes.
 Service of the system and demonstration that hybrid battery flywheel storage can provide services in the time frame of 500ms to 20 minutes.

 Image: Comparison of the system and the sys

Italy

ADVANCE DISPATCHING & LFOR

Advance Dispatching and real-time forecasts of active&reactive load

A real-time software currently in use in the National Dispatching Control Room of Terna (Italian TSO). Its main goal is to define and propose the best dispatch of all the power-generating modules qualified for the Italian ancillary services market

Years	s	Project total cost	Website	Coordinator's country	Coordinator
N.A.	N.A. N.A. N.A.		N.A.	Italy	Terna
Types of technologies and services tackled			s and services tackled	Partners	Countries involved
GRID			MARKET	N.A.	1
KER			Dispatching and real time precast, LFOR Platform	Advanced algorithms for linear programming, adopting mixed-integer variables (MILP)	
	LFOR Platform applicable, with high perfor and nodal active or reactive power forecas			net load forecast	
Strengthen system operation and increase security of supply for final customers; Re of system costs for balancing; Improvement of both load forecast accuracy and system curves accuracy and system costs for balancing; Improvement of both load forecast accuracy and system costs for balancing; Improvement of both load forecast accuracy and system costs for balancing; Improvement of both load forecast accuracy and system costs for balancing; Improvement of both load forecast accuracy and system costs for balancing; Improvement of both load forecast accuracy and system costs for balancing; Improvement of both load forecast accuracy and system costs for balancing; Improvement of both load forecast accuracy and system costs for balancing; Improvement of both load forecast accuracy and system costs for balancing; Improvement of both load forecast accuracy and system costs for balancing; Improvement of both load forecast accuracy and system costs for balancing; Improvement of both load forecast accuracy and system costs for balancing; Improvement of both load forecast accuracy and system costs for balancing; Improvement of both load forecast accuracy and system costs for balancing; Improvement of both load forecast accuracy and system costs for balancing; Improvement of both load forecast accuracy and system costs for balancing; Improvement of both load forecast accuracy and system costs for balancing; Improvement of both load forecast accuracy and system costs for balancing; Improvement of both load forecast accuracy and system costs for balancing; Improvement of both load forecast accuracy and system costs for balancing; Improvement of both load forecast accuracy and system costs for balancing; Improvement of both load forecast accuracy and system costs accuracy					
	All power system users				

LIVING GRID

LIVING GRID

ADVANCE

DISPATCHING

& LFOR

Development of new models for the enhancement of the system observability and the optimal management in emergency conditions of: the National Transmission Network (NTN), the disconnection and reconnection of portions within the network and of the related DER, contributing to overcome the traditional "load shedding" concept, and the distributed generation curtailment

Years	Project total cost	Website	Coordinator's country	Coordinator	
2018-2020	1 M€	N.A.	Italy	ENEA	
Types	Types of technologies and services tackled Partners Countries involved				
CONSUMERS GRID STORAGE & N.A. 1				1	
KER	Grid observability & controllability				
9	Enhancement of the observability and of the forecasting capacities of available resources finalized to their optimal management. Increase of the automation and control both on HV and MV networks, and on the interface between the networks of medium and high/extra high voltage, in an increasingly integrated approach.				
	Safety and reliability of networks in the presence of DER (generation and loads). Higher quality of service levels, monitoring capabilities, observability and controllability. Otimizing the use of the transport network				
1	capacity. Reduction of CO2 emissions and environmental impact. TSOs and DSOs.				

STORAGE LAB

STORAGE LAB

Field testing of power-intensive Electrochemical Storage Systems (ESSs) installed in the main Italian islands of Sardinia and Sicily and connected to the national transmission grid for the provision of system services (e.g. primary and secondary frequency response, black start)

Yea	irs	Project total cost	Website	Coordinator's country	Coordinator
2014-	2014-2018 50 M€ <u>https://www.terna.it/en-gb/sistemaelettrico/</u> progettipilotadiaccumulo.aspx		Italy	TERNA	
Тур	pes of tecl	nnologies and	services tackled	Partners 0	Countries involved
	GRID STORAGE & MARKET		MARKET	5	1
KER	Regulation services		Know-how sharing		
	To allow to identify the best storage technologies and their key findings in order to set specific services to be provided from this kind of systems for TSO applications and ancillary services market.		To allow to spread the key findings of the project and make people interested in storage systems more aware of pros and cons of each technology and of advantages for the electric system.		
		crease of grid se	or providing grid services to ecurity. CO_2 reduction: 337	Publication of project reports presenting results of experim	
?	Society,	private investor	s (in storage technologies).	Society, investors, TSOs.	

ETIP SNET EUROPEAN SMART

TECHNOLOGY AND INNOVATION PLATFORM

NETWORKS FOR ENERGY

TRANSITION

ITCity

OTHER PROJECTS

Latvia

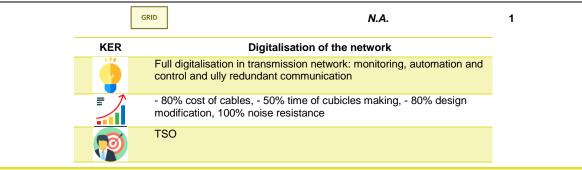
ITCITY

An ICT platform for sustainable energy ecosystem in smart Cities

Response to the citizens' needs for new information technologies applications of various energy technologies usage, integrated in an intelligent way within Platform area at City level

Years	s	Project total cost	Website	Coordinator's country	y Coordinator
2017-20	020	0.6 M€	http://fei-web.lv/en/itcity	Latvia	Institute of Physical Energetic (IPE)
	Types of technologies and services tackled			Partners	Countries involved
		CONSUMERS		7	5
KER		ctricity consumption b-based platform for smart cities	Methodology for municipalities in transition to Smart Cities	A framework based on a mobile application for smartphones	Simulation for communication solutions in Wireless Sensor Networks (WSN)
Ŷ	value mete grant meas value curre react dyna etc. t for ty	of instrumentation is available in smart rs, with high time larity for the surement of rms is for voltages and nts, active and ive powers, energy, mic tariffs, time of use o derive load profiles pical households in t Cities.	Specification of the techniques to characterize the methodology for Smart Cities services for energy (intelligent planning, design and operation of urban energy networks, including renewables and smart grids technologies integration).	To engage people to contribute to smart cities, focusing on reducing energy consumption by changing consumption behaviors in daily life.	To determine the scope and new frontiers of wireless sensor networks, in order to feed different systems distributed throughout the city, mainly working on the internet of things (IoT) and MachinetoMachine (M2M).
	ecos city s life at trans	ibution to city energy ystem, improvement of ervices and quality of anational and national level. More ent planning of the grid ation.	Raise the level of development of all main structures of the city, from awareness of the inhabitants to the introduction of progressive technologies.	Impact on future endeavours towards smart cities, reduction of energy consumption.	To efficiently manage the energy in homes, neighborhoods and metropolitan urban areas.
?	energ hous	users of electrical gy, mainly in eholds from Smart s. DSOs and ESCOs.	Citizens, municipality, merchants, research institutions.	End users.	End-users.

Lithuania


DIGITALIZATION OF THE VIDIŠKIAI TRANSFORMER SUBSTATION

VIDIŠKIAI DIGITALIZATION

Implementation of Vidiškiai 110 kV transformer substation (TS) as the first digital substation in the grid. New generation Robotic Process Automation (RPA) equipment manufactured under IEC 61850 which ensure interoperability in the horizontal communication within the optical data network was introduced

Years	Project total cost	Website	Coordinator's country	Coordinator
2013-2016	0.6 M€	N.A.	Lithuania	Litgrid

Types of technologies and services tackled Partners **Countries involved**

Netherlands

CO-RISE

Community innovation for sustainable energy: Aligning social and technological innovation

CO-RISE

Alignment of social and technical innovation through investigating the innovative potential of local energy initiatives in terms of technology, social embeddedness and normativity as well as researching the innovative potential of emerging sustainable energy technologies, including their social and normative dimensions

Years	Project total cost	Website	Coordinator's country	Coordinator
2016-2020	0.5 M€	N.A.	The Netherlands	University of Gronigen
Types o	f technologies ar	nd services tackled	Partners	Countries involved

CONSUMERS	GRID STORAGE & POWER POWER-TO-X GENERATION MARKET	N.A.	1
KER	Set up of loca	energy co-operatives	
Ÿ	Community acceptance, local energy	solutions.	
		es can be reduced by as high as 30 % system in synergy with centralized ene	
1	Local energy communities		

DYNAMO

Define possible business models for Smart Meter system

DYNAMO

CEDREN

HYDROBALANCE

Definition of possible business models for Smart Meter systems, in order to start a distributed Flexibility market based on USEF (Universal Smart Energy Framework)-standardized market rules and to enable cooperation between aggregators, DSO and other market parties

Years	Project total cost	Website	Coordinator's country	Coordinator
NA	3 M€	N.A.	The Netherlands	Alliander
Types of	Types of technologies and services tackled		Partners	Countries involved
		VET		

CONSUMERS GRID MARKET		N.A.		
KER	Flexibility market model	Management of flexibility by a DSO		
ÿ	Promoting demand response provided by market players in an open and standardized way	Smart Grid management, digitization of daily grid management		
	New market for aggregators and customers. Give value to flexibility	Reduce grid investments		
Ø	Customer, Balance Responsible Party BRP, aggregator, TSO and DSO	DSO, customer, aggregator		

Norway

CEDREN HYDROBALANCE

Large-scale balancing and energy

storage from Norwegian hydro power

Potential future uses of hydropower flexibility and storage up to the year 2050: Economic opportunities, environmental impacts, mitigation of new operational regimes in reservoirs, challenges in terms of regulatory framework, policy, public acceptance

challenges in terms of regulatory framework, policy, public acceptance						
Years	Project total cost	Website	Coordinator's country	Coordinator		
2013-2017	2.6 M€	http://www.cedren.no/english /Projects/HydroBalance	Norway	SINTEF Energi		
Types o	Types of technologies and services tackled			Countries involved		
		AGE & MARKET	N.A.	1		

KER	Flexibility and energy storage needs in the transistion	Investment tool for pumped-storage and hydro in a multimarket setting	Environmental assesment of hydro reservoirs
	Method for calculation of detailed future wind and solar output - for operation and energy system planning	Prototype for estimation of revenues from additional pumped-storage for investment and operation purposes	Methodology for assessing environmental and economic consequences of pumped- storage between reservoirs
	Support the transition towards emmision free electricity sector	Improve investement decisions for a key tecnology for flexibility (Hydro Power), helpful in revisions of hydropower regulation, New advances in methodology for planning and Investment	Contribution to the dicussion regarding how to use and expand hydropower as energy storage
1	Government. Regulators. Operators. Consultancy	Power Companies and service providers	Policy makers and the Hydro Power industry

CIN[©]LDI

OTHER PROJECTS

CINELDI

Centre for intelligent electricity distribution to empower the future smart grid

Enabling a cost-efficient implementation of the future flexible and robust electricity distribution grid. This will pave the ground for increased distributed generation from renewable resources, electrification of transport, and more efficient energy use

Yea	ars	Project total cost	Websit	e	Coc	ordinator's country	Coordinator	
2016-	2016-2024 40 M€		https://www.sintef. b/cinelo			Norway	SINTEF Energi AS	
	Турез	s of technolog	ies and services tac	kled		Partners	Countries involved	
	CONSU	MERS GRID S	TORAGE & POWER ower-to-x GENERATION MARK	KET		29	1	
KER	for pla	on support Inning and asset agement	New concepts and solutions for smart operations	Cost effect integratio flexible reso	n of	Microgrid concepts, technologies and solutions	Roadmap for the transition to the future distribution system	
•	method tools fo optimal and ass manage future d system	planning set ement of the listribution	New cost-effective concepts and solutions for smart operations based on new emerging control and monitoring technologies and extensive real time monitoring	Methods and models for ca effective integration of flexible resou in smart distribution g including bus models on ha utilize this fle	ost irces rids, siness ow to xibility	Microgrid concepts, technologies and solutions for optimal design, operation, and integration with the distribution system. Technologies and solutions for micro grids, self- contained electricity system	Develop a credible set of Smart Grid visions and scenarios, guidelines and recommendations for the transition to the future flexible, robust, and cost-efficient electricity distribution system by integrating the results and findings from the other KER into a holistic strategy	
	through utilisatio existing infrastru more ta oriented investm better c risks. R grid tari increas of Distri renewa generat efficient energy strength	on of and new ucture, rget- d ents, and ontrol of eduction of ffs, e of share buted ble ion, more t Power and use,	More flexible operation of the distribution grid, contributing to cost reductions, enhanced energy efficiency and improved system reliability and security, as well as standardised solutions. Better Control of cyber risks	Market soluti for flexibility, securing elec supply, incre utilisation of grid, flexibilit alternative to investments. Improved interaction D TSO to bene total power s especially by enabling DEI flexibility to a levels	ctricity ased the y as grid SO- fit the ystem, R	Better Control of Security of electricity supply, integration of DER, strengthened Research institutes. Contribution to cost-efficient and robust integration of microgrids with the distribution grid	Strategy for the future electricity distribution system, regarding grid Investments, smarter operation, utilisation of flexible Resources and microgrids. Opportunities for the future distribution system	
?		e	Grid companies, power producers, end-users, ICT and technology providers	Grid compan TSO, end-us		Grid companies, power producers, end-users, technology providers	Grid companies, end- users, power producers, technology and ICT providers	

FASAD

Fault and interruption handling in

FASAD

FL==Xnett

smart distribution systems

Investigation on how smartgrid technology can be utilized in the electric distribution grid to reduce interruptions in the electricity supply as well as the socio-economic costs of interruptions

Project total cost	Website	Coordinator's country	Coordinator		
N.A.	https://www.sintef.no/en/pro jects/fault-and-interruption- handling-in-smart-distribut/	Norway	Sintef Energi AS		
Types of technologies and services tackled Partners Countr					
GRID		N.A.	1		
KER	Smart fault and inter	ruption handling			
		,	n, in		
More e					
Grid companies and end-users.					
	Cost N.A. of technologies and GRID KER Utilisat combin Improv More e interru	cost website N.A. https://www.sintef.no/en/projects/fault-and-interruption-handling-in-smart-distribut/ of technologies and services tackled GRID KER Smart fault and interruption-combination of fault current sensors concombination with remotely controlled of the combination with remotely controlled of the combination of faults and interruptions, improved system solution	cost website coordinator's country N.A. https://www.sintef.no/en/projects/fault-and-interruption-handling-in-smart-distribut/ Norway of technologies and services tackled Partners GRID N.A. KER Smart fault and interruption handling Utilisation of fault current sensors connected to the Control syster combination with remotely controlled disconnectors. Improved work processes and faster restoration of electricity supproved work processes and faster restoration of electricity supproved system solutions before scaling up.		

FLEXNETT

Flexibility in the future smart distribution grid

Increase of the future smart grid distribution flexibility in a cost effective, sustainable and reliable way. This will be done by demonstrating and verifying technical flexibility solutions in the market on different grid levels to identify the effect of solar production on flexibility

Years	Project total cost	Web	site	Coordii	nator's country	Coordinato
2015-2017	2.2 M€	https://hafenstrom.com/ne w-project-flexnett/			Norway	BKK Nett
Types of technol	logies and servio	es tackled		Partners	•	Countries involve
CONSUMERS		DWER		17		1
KER	Battery for po of grid in	•	Self-he techno	0	Sun map f customer	
9	Battery installe prosumer cont voltage suppo alternative to r	tributes to rt as an	Implementat technology f healing in th distribution of	or self- e	Demonstration o benefit from sola panels.	
	Postponemen investment.	t of grid	Reduced ou the custome	0	Increased self- consumption for customers.	the
(DSO and cust	omers.	Customers.		Customers.	

MODFLEX

STRONgrid

OTHER PROJECTS

MODFLEX

Modelling Flexible resources in the

distribution grid

Development of dynamic models representing the consumption and production profiles for different flexible resources in the smart distribution grid. The Project will address how such resources can be utilized to increase the flexibility in the grid - without introducing new peak load hours due to the rebound effect

Years	Project total cost	Website	Coordinator's country	Coordinator
2016-2019	1.6 M€	https://www.sintef.no/en/projects/modelling flexible-resources-in-smart-distribution/	- Norway	SINTEF Energi
Types of t	echnologies a	nd services tackled Pa	rtners Cou	ntries involved
	CONSUME	15	N.A.	1
KER		Modelling flexible resource	es	
`	units (load, effect, and i	high resolution consumption profiles for diffe DG and storage), including potential for flexi dentify how Photovoltaic (PV), EV, instant w loads affect the distribution grid with and with ad storage	bility and possible rebou ater heaters and other	Ind
	Evaluation of how flexible resources can be an alternative to Software improvement for grid planning			
?	DSO			

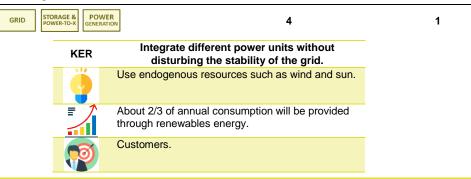
STRONGRID

Smart Transmission Grids Operation and Control

Development of knowledge and solutions to improve security and efficiency in operation and control of the next generation electric power systems

Years	Project total cost	Website	Coordinator's country	Coordinator
2011-2015	24 M€	https://ses.jrc.ec.europa.eu/stro ngrid	Norway	Norwegian University of Science and Technology
Types of t	echnologies and	d services tackled	Partners C	ountries involved
	GRID		12	7
	KER Applications of PML		rements in power system ion	
		mproved situational awareness and system operators of dynamic perfor	0 01	
		Better utilization of the power grid w system security	ithout jeopardizing power	
	()	End user		

Portugal


GRACIOSA

Renewable Generation with Intelligent Storage and Consumption to Operate Distribution Networks with Auto-consumption Systems

Intelligent power controls and purpose-built Energy Management System combined with a battery storage system, a wind park and a photovoltaic power plant. The system allows to power the island by wind and solar energy with the existing diesel needed only for back-up power during prolonged periods of unfavorable weather

Years	Project total cost	Website	Coordinator's country	Coordinator
2014-2017	24 M€	https://www.younicos.com/case -studies/graciosa/	Portugal	Younicos

Types of technologies and services tackled Partners **Countries involved**

SINAPSE

Near Real-Time Outage Detection With

SINAPSE

GRACIOSA

Spatio-Temporal Event Correlation

Platform to improve the visibility over the low voltage grid, making available an automatic communication channel for low voltage anomalies, with internal and external sources of data, adding intelligence to the distribution grid

	Project total cost	Website	Coordinator's country	Coordinator
2014-2017	0.06 M€	https://www.edp.com/en/stor ies/sinapse Portugal		EDP Inovação/ EDP Distribuição
Types	Countries involved			
	GRI		2	1
	KER	KER Real-time external events correlation		
	sta	napse leverages on real-time si akeholders such as telecom op ayers to correlate events and de	erators and other industrial	
	- /			
	Ca	onsumers (both business and re		

PLAN, INNOVATE, ENGAGE,

Slovenia

NEDO PROJECT

NEDO

Study of the technological possibilities of multi-utility smart metering (partnership with the Japanese agency NEDO)

Yea	irs	Project total cost	Website	Coordinator's country	Coordinator
2016-2	2019	35 M€	https://www.eles.si/en/ned o-project	Slovenia	ELES
	Types o	of technologies and	d services tackled	Partners	Countries involved
CONSUMERS GRID STORAGE & POWER POWER-TO-X GENERATION MARKET				3	2
KER	Increased supply of tertiary frequency control with advanced services		tertiary frequency secondary reserves control with advanced using environmentally		Involving small consumers (households, small businesses) in ancillary services
		ing itiveness of tertiary supply.	Provision of Secondary Frequency Control by Energy Storage Systems.	Real-life operation of advanced DMS (Distribution Management System) functionalities.	Involving consumers on a very low-cost principle in actively participating in electricity markets and system services.
	Very low-cost ancillary service.		Demonstration of the feasibility of storage.	50% higher reliability of electricity supply and 50% higher reliability of the provision of services to the TSO from lower- voltage levels.	20 % reduction of consumption in peak hours.
1	TSOs, g	grid users.	TSOs, grid users.	Grid users.	DSOs, TSOs.

ETIP SNET

EUROPEAN TECHNOLOGY AND INNOVATION PLATFORM SMART NETWORKS FOR ENERGY TRANSITION

SINCRO.

OTHER PROJECTS

SINCRO.GRID

Implementation of the SINCRO.GRID

PCI - Phase 1

Solving network voltage, frequency control and congestion issues enabling further deployment of renewables and displacement of conventional generation by integrating new active elements of transmission and distribution grids into the virtual cross-border control centre based on advanced data management

Yea	rs	Project total cost	Website		Coordinator's country	Coordinator	
2016-2	2021	88.5 M€	https://www.sincrogrid.	eu/en/	Slovenia	ELES d.o.o.	
	Types of technologies and services tackled Partners Countries involv						
CONSUMERS STORAGE & MARKET N.A.						1	
KER	Real-Time voltage control for optimization at national and international level between TSOs and DSOs					y of Active power. supply of ancillary services.	
Ö	profiles	potential penetration. Relieved shortage	Provision in a secure manner and impact on a wider- regional level.				
	•	•	ng performance in the control b				
	Better u	utilization of existin	g transmission grid using the D	TR system.			
		bservability of dist sting tools, DTR and	ribution and transmission grids d information.	using advanced			
	Additional tertiary reserve provided by the DSM by establishing a common communication platform.						
	Higher social welfare for society, increased competition, lower CO2 emissions, new research findings. Increasing the system flexibility. Increasing network capacities.				CO2 emissions. ilization. Enable a tion of RES.		
1	Customers, TSOs, DSOs, aggregators TSOs and grid users					id users	

KER	Flexibility of Reactive power	Dynamic thermal rating of power lines	Virtual cross-border control centre.
9	Installation of compensation devices for reactive power control	Reducing the construction of new transmission lines.	Support remote control of new devices (SVC/STATCOM/VSR, Storage, Wind farms)
	Preventing voltage breakdown or network element failure.	Increased utilization of the grid, increased maximum thermal capacity and increased system realiabitility, facilitating system control in case of extreme operational conditions, deferred transmission grid investments.	Possibilities of new SW implementation. Customized solutions to existing system. Control system upgrade.
(19)	TSOs, customers	TSOs, Customers	TSOs, DSOs, Customers

Spain

ADOSA

Analyzis Sizing and Optimization of **Energy Storage Systems**

ADOSA

Development of a software tool for analyzing and sizing from a techno-economic perspective energy storage systems jointly operated with renewable energy generators

Years	Project total cost	Website	Coordinator's country	Coordinator
Ended in 2017	0.3 M€	N.A.	Spain	Acciona Energia & Tecnalia
Types	Partners	Countries involved		
STORAGE & POWER POWERTO-X GENERATION MARKET			N.A.	1
	ware tool			
Capacity of systematically analyzing and energy storage systems and applications				
		 Reducing technical and stages. 	financial risk from early	

The user and the final customer.

ALISIOS

Almacenamiento para la integración

ALISIOS

1

de renovables en sistemas aislados

Evaluation of storage capabilities to provide system services in the context of isolated electrical systems with large RES penetration

Years	Project total Website		Coordinator's country	Coordinator	
2017-2021 10 M€ N		N.A.	Spain	REE	
Types of technologies and services tackled			Partners	Countries involved	

Types of technologies and services tackled

STORAGE & POWER-TO-X

N.A.

KER	Tool for system frequency enhancement	Tool to cope with RES variability	
ÿ	Tool to keep system frequency within security margins	Mitigation of the effect of short-term variations of RES generation	
	Enhancement of power quality in term of frequency stability; better quality of supply	Increase of RES penetration at isolated power systems, system-wide thus contributing to less pollution, and cheaper electrical system	
1	All users of the power system	All users of the power system	

AMCOS

AMCOS

Advanced Modular COmpensator System

Design of a new cost-effective modular converter to act both as a Static Synchronous Compensator (STATCOM) and an Energy Storage System (ESS). The modular approach of this development permits to combine different types of energy storage devices, as some modules may comprise supercapacitors while others comprise batteries

Years	Project total cost	Website	Coordinator's country	Coordinator
2014-2017	2.6 M€	http://www.ree.es/en/r ed21/rdi/rdi- projects/amcos	Spain	REE
Types of te	echnologies and	services tackled	Partners	Countries involved
	STORAGE & POWER-TO-X		N.A.	1
	KER	Modular conve	erter (Prototype of control)	_
			level Converter (MMC) modules: the llows to differentiate between active s	
		Storage devices can be communications and res excellent power grid qua control	F	
	(User		

CECOVEL

CECOVEL

Control Center for Electric Vehicle

9

Robust and reliable SCADA that allows the visualization and management of the demand generated by electric vehicle charging points

Years	Project total cost	Website	Coordinator's country	Coordinator
2014-2016	0.6 M€	N.A.	Spain	REE
Types of teo	chnologies and ser	vices tackled	Partners C	Countries involved
	GRID		N.A.	1
	KER Guidelines for EV		d management	
		e integration of electric vehicle d tricity system and intelligent cha		
	elec	Spread the use of EVs. System allowing the charge of electric batteries at any time in an efficient way. Efficiency and sustainability. Technological innovation.		
	Syst	em operators		

HVDC LINK

HVDC links for marine energy evacuation: future solutions

Investigation on HVDC technologies aiming at reducing the cost and complexity of the current HVDC existing architectures to connect offshore wind farms to the main grid

Years		Project total cost	Website	Coordinator's	country	Coordinator
2015-2	2015-2017 1.3 M€ <i>N.A.</i> Spain			TECNALIA		
Types of technologies and services tag		es tackled	Partners		Countries involved	
GRID			4		1	
KER	KER Hybrid HVDC transmission architecture		•	control of VSC-		urrent and voltage ement in HVDC systems
(New HVDC hybrid system optimized for the transmission of energy generated in offshore generation plants.		and the AC sy phenomena r	e interaction C-HVDC converters ystem, for different elated to power ge and frequency	current a voltage,	sors, one optical for and one R-C divider for to provide digital ments for HVDC lines.
	Lower complexity than offshore substations based on MMC converters. Lower size and weight of the offshore substation. Higher efficiency and reliability. Lower cost.		of analysis (to knowledge). ion.	cquired in this field oday lack of		solutions and accuracy of surement.
1	Consume	r.	User.		Custome	er.

EUROPEAN TECHNOLOGY AND EUROPEAN TECHNOLOGY AND EUROPEAN SMART NETWORKS FOR

TECHNOLOGY AN INNOVATION PLATFORM SMART NETWORKS FOR ENERGY TRANSITION

IDEAS

Interoperabilidad de Equipos de

Automatización de Subestaciones

Development and demonstration of a complete solution for a HV / MV substation incorporating IEC 61850 into its Integrated Control and Protection System, covering all the lines associated with a new automation system

Years	Project total cost		Website		Coordinator's co	ountry	ry Coordinator	
2016-2018	0.8 M€	?source=capa	https://www.fcirce.es/web/data/project.asp ?source=capacitynew&id=77955&idc=21& ourcec=areaoffelec		Spain		ENDESA	
Types of technologies and services tackled					Partners		Countries involved	
GRID MARKET					5		1	
KER	Control and protection system for an electrical substation according to IEC 61850		Increase of functional and communications capacities of electrica substations	I	and viable interoperabilit standard of the control and p IEC 61850 equipment of		Enhancement of operability between trol and protection pment of electrical substations	
9	connection a TCP / IP one that su	of IEC 61850	Adaptation of the substations to the new (smart) grid model topologies.	su te de be im	o prevent ubsequent chnological evelopments from sing subject to the plementation of a articular supplier.	guide intero syste guara optim	low the international lines for the design of perable Smart Grid ms [thus nteeing a more ized management of etwork.	
	a new ager interact wit		Incorporation of additional functionalities into an updated communications network.	Ċ	osts reduction.	intero of cos	ncement of perability, reduction sts, increase of etitiveness.	
?	DSO, TSO).	DSO, TSO.	DSO,	TSO.	Final us	ser, DSO, TSO.	

ETIP SNET

EUROPEAN TECHNOLOGY AND INNOVATION PLATFORM SMART NETWORKS FOR ENERGY TRANSITION

LIFE FACTORY MICROGRID

Electric vehicles to grid, renewable generation

∂ess

and Zn-Br flow battery to storage in industry

Demonstration, through the implementation of a full-scale industrial smartgrid, that microgrids can become one of the most suitable solutions for energy generation and management in factories that want to minimize their environmental impact

Years	Project total cost	Website	Coordinator's country	Coordinator		
2014-2017	1.9 M€	http://www.factorymicrog rid.com/	Spain	Jofemar Corporation		
Types of	of technologies and ser	vices tackled	Partners	Countries involved		
STORAGE & POWER GENERATION 3 1						
KER New environmentally friendly business model						
Implementation of a smart industrial microgrid at real size and demonstration that the microgrids can be a solution for the generation and energetics management of factories willing to minimize their environmental impact.						
Reduction of GHG emissions, increase of self comsuption up to 100% depending of smartgrid characteristics Electric dependence, reduction of black outs and energy transmision costs.						
	Customers.					

LIFE ZAESS

Zinc Air Energy storage

system

Demonstration of a low cost and environmentally friendly Zinc-Air Flow Battery Energy Storage System for renewable energy integration

Years	Project total cost	Website	Coordinator's country	Coord	rdinator	
2014-2017	1.2 M€	http://www.zaess.eu/	Spain	Tecnicas	s reunidas	
Types of technologies and services tackled Partners Countri						
STORAGE & POWER-TO-X 2						
	KER	Zinc	-Air flow battery			
Increased rechargeability and life span; less energy lost in the storage process; increased total system capacity, making it suitable for grid-scale renewable energy storage; and reduced production costs, because inexpensive and abundant materials are used						
	1	Researcher in the same field, D	DSOs, TSOs			

MMC

MMC

Modular Multilevel Converter

Design and development of a small scale Modular Multilevel Converter and the necessary electronic boards to interface with a Hardware-in-the-Loop (HIL) system. The final goal is to get a fully flexible and modular converter to test different control algorithms, in order to validate multiterminal HVDC architectures that are being designed to integrate offshore wind farms into the main grid

Years	Project total cost	Website	Coordinator's country	Coordinator
2015-2016	0.7 M€	N.A.	Spain	TECNALIA

Types of	of technologi	es and services tackled	Partners	Countries involved
	GRID	POWER GENERATION	1	1
	KER	_		
	(To provide a facility for research and deve algorithms for VSC-HVDC multi-terminal li grids.		
		Fully flexible and modular converter, integ farms into the main grid.	rate offshore wind	_
	?	Users.		
				_

NOISEEK

NOISEEK

Development of a platform (device + web application) designed to detect the electrical phase and the meter from wich a noise arrives, disturbing the PLC communications in an electrical network

Years	Project total cost	Website	Coordinator's country	Coordinator
2017-2018	17-2018 0.1 M€ <i>N.A.</i>		Spain	Tecnalia
Тур	es of technologies	and services tackled	Partners	Countries involved
	CONSUMERS GRI	MARKET	N.A.	1
_	KER N	IOISEEK device (Hardware)	NOISEEK web appli	ication
	the succe (problems	ne in PLC roll-outs and improvin essful rate in PLC communicatio s in PLC communication is estin up to 2% of the meters).	ns aggregated way,helping	3
_	Improvement of the management of the 2% communications.		2% meters impacted by problems	s in PLC
	Utilities a	nd their customers.	Utilities and their custor	ners.

REDACTIVA

OTHER PROJECTS

REDACTIVA

Innovación en la automatización de la red de distribución de neutro aislado

Development of new solutions and innovative equipment that enable a higher degree of automation in the medium & low voltage distribution networks in order to improve grid operation

Yea	rs	Project total cost	Website		Coordinator country	's Coordinator
2016-2	2018	3.5 M€	http://www.unionfenosadistribue smart+grids/research+and+de spanish/1297303835189/reda	velopment/	Spain	UNION FENOSA DISTRIBUCION SA
	Types of	technologies and	l services tackled	Partners		Countries involved
		GRID MAR	кет	7		1
KER		ications to avoid idesired "isle" generation	Solutions to avoid or reduce ferro-resonance appearance in MV grids	-	/ intensity isors	Early detection of faults for predictive / preventive maintenance
(implem algorith protect accide but als grid res implem	opment and nentation of several nms, not only to the grid from ntal anti-isle events o to research about sponse by nenting anti-isle intentionally.	electronic power converter that behaves like a resistance emulator		cables in the	Capacitive sensors integrated in the MV electrical switchgear to capture signals of the partial discharges and the reference of the voltage wave.
	efficier to grid reducti power equipn rate of	rement of the ney of automatisms re-connection and on of risks for the generator nent, increasing the success of remote operations.	Mitigation and prevention of overvoltages and unwanted behavior in the protections, thus improving network operation	Improvement of transformation centers operations, possibility to develop complex synchronization check algorithms on both sides of the switch.		Ability to perform an early analysis of the quality of the installation without need of complex installations and power supply cuts and allowing a continuous monitoring over time of the entire system.
(19)	DSOs.		DSOs.	DSOs.		DSOs.

Renova

Countries involved

1

as

OTHER PROJECTS

RENOVAGAS

Proceso para la generación de

gas natural renovable

Development of a 15-kW synthetic natural gas production plant: hydrogen will be produced in an electrolyser and then it will be introduced in a methanation reactor with a biogas stream for the production of synthetic natural gas

Years	Project total cost	Website	Coordinator's country	Coordinator
2014-2017	2.2 M€	http://www.cnh2.es/investigacion/ proyectos-finalizados/renovagas/	Spain	CNH2

Types of technologies and services tackled

STORAGE 8

7

Partners

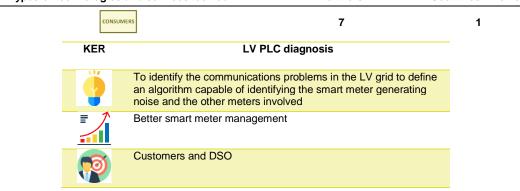
KER

New Catalyst for Methanation Supporting the development of Power-to-Gas and reducing costs by looking at the effects of

admixtures of H_2 and Natural Gas in the gas grid Integration of more renewable generation in the market thanks to a large-scale storage

option, and decarbonisation of the gas and heating systems

Electriciy and Gas utilities through the integration and greening of their repsective grids and society as the development is a climate intiative


OSIRIS

Optimización de la supervisión Inteligente de la Red de Distribución

Guarantee of the correct operation of the remote management infrastructure from the point of view of communications, allowing to assess the status of the electrical infrastructure given that it has opted for a communication technology that overlaps the electrical infrastructure, so that they are interrelated

Years	Project total cost	Website	Coordinator's country	Coordinator
2014-2016	10 M€	http://www.proyecto- osiris.com/	Spain	Ministry of Industry of Spain
Types of technologies and services tackled		Partners	Countries involved	

SECUREGRID

New Cybersecurity Technologies and

Data Analytics for Electric Substations

Development of new knowledge in the field of cybersecurity applied to Intelligent Electronic Devices (IEDs) and substations, definition of the degree of security that an IED can achieve for each of the security requirements

Yea	Years Project total cost W		Webs	ite	Coordinator's	s country	Coordinator
2016-:	6-2018 4 M€ <u>http://www.clusterenergia.</u> /securegrid		Spair	۱	ZIV		
Types of technologies and services tackled					Partners	Cou	Intries involved
		GRID			7		1
KER	S	SecureGrid Security Model			Electronic Devices with a higher degree of cybersecurity		
9	security ca	ovision of clear infomation about what curity capabilities in electronic devices could required by utilities.				trical installa	equipment (IED) ations in which they
	Check cyb	Check cyber-attacks and get data.		Increase of the security level of electrical networks, a reduction of the risk of cyberattacks.		al networks, and	
1	Equipment manufacturers.			DSOs.			

STORE

STORE

Storage Technologies in Canary Islands

Installation and testing of different storage technologies in Canary island

Years	Project total cost	Website	Coordinator's country	Coordinator
2009-2013	7.9 M€	N.A.	Spain	ENDESA GENERACION
Types of	technologies and s	ervices tackled	Partners	Countries involved
GR	ID STORAGE & POWER POWER-TO-X GENERATIO	MARKET	N.A.	1
	-	KER Improv	ement primary regulation in islands	
			rimary regulation behavior of islands, oad shedding events	
		Dramatic islands	reduction in load shedding events in	_
		Electrical	island system and customers	

Sweden

CLOUDGRID

Transnational Cloud for Interconnection of Demonstration Facilities for Smart Grid Lab Research & Development

Assessement of some of the challenges of the future European power grid from the perspective of i) Grid System Stability, ii) Ancillary Services and Energy Management System and iii) Converter interoperability

Years	Project total cost	Website	Coordinator's country	Coordinator
2016-2019	2.3 M€	www.eranet-cloudgrid.eu@se.se	Sweden	ABB
Types	Types of technologies and services tackled			Countries involved
CONSUME	STORAGE 8 POWER-TO-X	POWER GENERATION MARKET	N.A.	4

KER	Simulation of the impact of RES on the stability of dynamic power systems	Ancillary Service Benefit and Risk Analysis (ASBRA)	Emulation of HVDC Cables using Hardware in the Loop technique	Demand control tool for building
	To analyse the future situation in Switzerland and Europe after integration of large amounts of RES and nuclear decommissioning. To develop new protocols and standars on how to manage the development of electric power systems in the presence of massive amounts in RES integration.	A method to evalute the benefits and risk associated with providing ancillary services, linking technology to economics.	Methodology for the design and the laboratory implementation of a HVDC cable emulator with a Power Hardware in the Loop approach.	Set of solutions (methodology, software and hardware) focusing to demand side management platform elaboration for optimal energy management strategies, topicality of smart metering & control including deployment of the price responsive demand.
	Since the results are disseminated also in the international reseach community, they can be interpolated and adjusted to solve similar problems of other places with similar objectives.	Decrease the cost for grid operation, avoid or delay grid investment. Cheaper power system and less impact on the environment. Lower prices, higher awareness of the power system. Power system more efficient, optimized market participation for the provider.	The proposed methodology eases the emulation exploiting the flexibility of Harware in the Loop systems and avoiding the need to use many km of real cables for preliminary testing.	New business models for aggregators. More efficiently use and save earth resources. Opportunity for implementation more challenging and complicated mathematical solutions based on artificial intelligentce achievements.
?	TSOs, governments, research community.	User, customer, producer, grid owner, society.	Research centers, universities, certification laboratories and technology providers.	Final consumer, and the whole power system participans: Aggregators, DSOs, TSOs.

LVM

LVM

Low Voltage Monitoring

Monitoring of low voltage network to increase security and reliability in the networks and to decrease SAIDI, SAIFI and CAIDI

Years	Project total cost	Website	Coordinator's country	Coordinator
2016-2017	N.A.	N.A.	Sweden	Vattenfall Eldistribution
Types of technologies and services tackled		Partners	Countries involved	
	GRID		3	1

KER

Digitization of processes and proactive dialogue with customers

Development of a new functionality that digitizes processes and enables proactive dialogue with the customer, therefore opening the possibility to monitor power quality

Increase of network reliability (decrease of SAIDI / CAIDI / SAIFI) and of power quality. Decrease of the need for ocular troubleshooting of faults in LV grid and for patrols along overhead lines in large geographical areas. Decrease of network losses.

SMART GRID GOTLAND

DSOs

SMART GRID GOTLAND

Increase of the capacity of renewables, improvement of power quality and reliability and creation of customer opportunities to participate in demand side management

Yea	irs	Project total cost	Website	Coordinator's country	Coordinator
2012-2	-2017 13.8 M€ <u>http://www.smartgridgotland.se/</u>		Sweden	Swedish Energy Agency	
Ţ	ypes of t	echnologies an	d services tackled	Partners	Countries involved
	CONSUMERS	GRID STORAGE & POWER-TO-X	POWER GENERATION MARKET	7	2
KER	Sm	art Customer Gotland	Just curtailment of wind power during grid disturbances	Smart Meters	Grid automation
Ŷ	behavic possibil smart m busines Smart n and dat	&protection	y curtailments during	Set of functions originally developed for operation and maintenance of the metering system, to build up an operational surveillance of the LV grid and to provide outage information to customers.	Provision of information from various devices in the grid, about faults and load flows, to foster reconnection process.
	power s	on of effects of shortages and gr ecks, decrease o bills.		Shorter outages, more satisfied customers, cheaper restoration.	Cost efficient alternative to conventional grid reinforcements.
1	Consun operato	ners and grid rs.	Wind power producers.	Consumers and grid operators.	Grid operators and consumers.

Switzerland

3D DSS

3D DSS

3D Decision Support System for power line planning

Development of a 3D Decision Support System that supports finding the "best" path between two points for a new overhead line. Social, environmental and economical aspects are considered

Years	Project total cost	Website	Coordinator's country	Coordinator
2014-2017	N.A.	https://netzausbau.ethz.ch/	Switzerland	ETH Zurich
Types of technologies and services tackled		Partners	Countries involved	
	GRID]	4	2
	KER		cy in line planning and increase e for grid projects	•
	9	Support the finding of the "best" path between two points for a new overhead line.		à
		Increase in acceptance for li planning, less delays in the		
	?	Society.		

HYBRID HVAC / HVDC OVERHEAD LINES IN SWITZERLAND

HYBRID HVAC HVDC

Examining major issues along the value chain of hybrid AC/DC overhead transmission in Switzerland: technical aspects of hybrid AC/DC transmission, power system integration aspects, economic aspects and social issues

Years	Project total cost	Website	Coordinator's country	Coordinator
2014-2018	0.9 M€	http://www.nfp70.ch/en/project s/electricity-supply/hybrid- overhead-power-lines	Switzerland	ETH Zurich
Types o	of technologies ar	nd services tackled	Partners C	countries involved
	GRID]	7	1
	KER	Facilitate the realisation of hy Switze		1
		creasing the transfer capacity with orridors.	nout the need for new transmis	sion
		Capacity increases on certain transmission sections at a higher public acceptance.		
	s s	ociety		

NEXUS

OTHER PROJECTS

NEXUS

Nexus Energy System Modelling Platform

Development and integration of a modeling platform that enables the study of complex and interdisciplinary questions about the impact of technical, socio-economic, and political decisions on the performance of the future energy system

Years	Project total cost	Website	Coordinator's country	Coordinator			
2016-2019	1.3 M€	http://www.esc.ethz.ch/researc h/research-projects/Nexus.html	Switzerland	ETH Energy Science Center			
Types	of technologies	and services tackled	Partners	Countries involved			
CONSUM	ERS GRID STORAG POWER-T		8	1			
KER Methodology for the analysis of the mutual influences of large-scale centralized and small-scale decentralized flexibility providers							
To understand where system flexibility should be procured optimally.							
Better utilization of decentralized flexibility to maintain system reliability. Ability to securely integrate more renewable energy systems. New business models and revenue streams for flexibility providers.							
	Er Er	nd-users.					

United Kingdom

HYBRIDISED LAES

Liquid Air Energy Storage with Enhanced Frequency Reponse Capabilities Demonstration Plant

HYBRIDISED LAES

Demonstration of deployment and trials of a high power high energy Liquid Air Energy Storage (LAES) system connected to the distribution network for the provision of frequency and reserve services and peaking power, and hybrised with load banks, super-capacitors and flywheels enabling sub second response frequency regulation services

Years Project total cost		Website	Coordinator's country	Coordinator		
2014-2019	10.8 M€	N.A.	United Kingdom	Highview Power		
Types of teo	hnologies and serv	rices tackled	Partners	Countries involved		
CONSUMER	S GRID STORAGE & POWER-TO-X	MARKET	2	1		
KER Hybridisation of Liquid Air Energy Storage for the provision of enhanced ancillary services						
	To prove provision	age technologies for	the			
-	toxic or ra	stainable energy storage techn are materials and do not have re the environmental impact. Redu m and of the cost paid by end c	ecycling issues, thus uction of the cost to	6		
	End user	, network operator.				

SMARTER NETWORK STORAGE

SMARTER NETWORK STORAGE

Understanding of how energy storage could be used to defer traditional network reinforcement. Evaluation of additional benefits that can be stacked to maximise the value that storage delivers, making it a more cost-effective alternative

Ye	Years Project total cost		Website	Coordinator's country	Coordinator	
2013	2013-2016 21 M€ innovation		tion.ukpowernetworks.co.uk/ /en/Projects/tier-2-projects/ -Network-Storage-(SNS)/	UK	UK Power Networks	
ту	ypes of te	chnologies and	services tack	led Partner	s Co	untries involved
GRID STORAGE & MARKET		4		1		
KER	Techn	o-economic dem	onstration	Business models and associated business c		ory and legal framework ecommendations
9	impact security storage	ology and evaluat of storage charact of supply; optimis for multiple applie gy allocation	teristics on sation of	Identification of multiservice business models for storage integration with a focus on th valuation and remuneration s of the system services broug storage	regulatory deploymer schemes electricity	olutions to legal and barriers that affect the and utilisation of storage for distribution einforcement deferral
	More sustainable networks, lower overall electricity costs, decrease in CO ₂ emissions		Commercial benefits can be from the result as it identifies suitable commercial arrange that can be replicated in othe where storage is used for ne investment deferral	recommen ments and wheth er cases of storage	ill depend on whether the dations are implemented er barriers to the adoption for network reinforcement n be tackled	
P	End use	ers		End Users, DSOs, Energy st		, DSOs, Energy suppliers, oject developers

WISE-PV

Whole system impacts and socio-economics

of wide scale photovoltaic integration

Investigation of drivers and opportunities to facilitate an increase in the role of solar energy in UK energy futures. The proposal also focuses on the role that UK industry could play in providing innovative PV technologies to lead global uptake of solar PV

Years	Project total cost	t Website		Coordinator's country	Coordinator		
<i>2013</i> -2016	N.A.	http://www.energy.mancheste earch/solar/wise-pv-pro		UK	The University of Manchester		
Types	of technologies and	services tackled	Partners	Со	untries involved		
	POWER		5		2		
	KER A multi-disciplinary analysis of UK grid mix scenarios with large-scale PV deployment						
	Assessment and comparison of 4 future UK grid mix scenarios with increased photovoltaic (PV) installed capacity with respect to a benchmark "Low PV" scenario, from 2016 to 2035 Image: Comparison of the example of the exampl						
- 							
	Users, Ma	rket					

This publication has been developed in the frame of the INTENSYS4EU project, which supports ETIP SNET activities and has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 731220

www.etip-snet.eu